Job流程:决定map个数的因素
此文紧接Job流程:提交MR-Job过程。上一篇分析可以看出,MR-Job提交过程的核心代码在于 JobSubmitter 类的 submitJobInternal()方法。本文就由此方法的这一句代码开始分析:
//计算并确定 map 的个数,以及各个输入切片 Splits 的相关信息
int maps = writeSplits(job, submitJobDir);
1.查看writeSplits()方法的实现过程:
private int writeSplits(org.apache.hadoop.mapreduce.JobContext job,
Path jobSubmitDir) throws IOException,
InterruptedException, ClassNotFoundException {
JobConf jConf = (JobConf)job.getConfiguration();
int maps;
if (jConf.getUseNewMapper()) { //决定map个数的关键性方法
maps = writeNewSplits(job, jobSubmitDir);
} else {
maps = writeOldSplits(jConf, jobSubmitDir);
}
//返回map个数
return maps;
}
2.查看writeNewSplits()方法的实现过程:
//此方法返回int类型,即map的个数
//此方法实现倒着分析为好
private <T extends InputSplit>
int writeNewSplits(JobContext job, Path jobSubmitDir) throws IOException,
InterruptedException, ClassNotFoundException {
Configuration conf = job.getConfiguration();
InputFormat<?, ?> input =
ReflectionUtils.newInstance(job.getInputFormatClass(), conf); //List集合是由getSplits()方法生成 -->【核心代码】
List<InputSplit> splits = input.getSplits(job);
//array数组是由List<InputSplit>集合转化而来 -->查看List集合的定义
T[] array = (T[]) splits.toArray(new InputSplit[splits.size()]); // sort the splits into order based on size, so that the biggest
// go first
Arrays.sort(array, new SplitComparator());
JobSplitWriter.createSplitFiles(jobSubmitDir, conf,
jobSubmitDir.getFileSystem(conf), array); //array数组的长度,即map的个数 -->查看array数组的定义
return array.length;
}
3.查看getSplits()方法的实现
此方法是InputFormat 类的一个抽象方法。在其子类 FileInputFormat 类中为文件格式输入类型提供了统一的 getSplits()方法实现。
public List<InputSplit> getSplits(JobContext job) throws IOException {
//第一个参数返回值为 1;
//第二个参数是读取配置文件中的 mapreduce.input.fileinputformat.split.minsize 属性(默认值为 0),如果没有配置则返回 1.
//所以 minSize=Math(1,0),即值是 1
long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job)); //读取配置文件中的 mapreduce.input.fileinputformat.split.maxsize 属性(默认没有配置)
//如果没有配置则返回 long.MAX_VALUE
long maxSize = getMaxSplitSize(job); //定义 List 集合,用来存储输入分片 InputSplit
List<InputSplit> splits = new ArrayList<InputSplit>();
//变量 files 存储的是 "输入路径中所有的文件集合"
List<FileStatus> files = listStatus(job);
//循环处理每一个输入文件
for (FileStatus file: files) {
//获得文件路径
Path path = file.getPath();
//获得文件总长度
long length = file.getLen();
//判断文件是否为空
if (length != 0) {
BlockLocation[] blkLocations;
if (file instanceof LocatedFileStatus) {
//获得文件对应的 所有Block块的 位置
blkLocations = ((LocatedFileStatus) file).getBlockLocations();
} else {
FileSystem fs = path.getFileSystem(job.getConfiguration());
blkLocations = fs.getFileBlockLocations(file, 0, length);
}
//如果文件大小非空,并且文件允许被分割
if (isSplitable(job, path)) {
//获取配置文件中Block块的大小,默认128MB
long blockSize = file.getBlockSize(); //计算输入切片的大小【核心代码】
long splitSize = computeSplitSize(blockSize, minSize, maxSize); //将bytesRemaining(剩余未分片字节数)设置为整个文件的长度
long bytesRemaining = length;
//while()循环体,按照 splitSize 对每个输入文件进行【逻辑切分】,得到 Splits 集合
while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
//参数列表:文件所在路径、切片起始的位置、切片大小、切片所在节点
splits.add(makeSplit(path, length-bytesRemaining, splitSize,
blkLocations[blkIndex].getHosts()));
bytesRemaining -= splitSize;
}
//如果block中剩下的一小段数据量小于splitSize,还是认为它是独立的分片
if (bytesRemaining != 0) {
int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
splits.add(makeSplit(path, length-bytesRemaining, bytesRemaining,
blkLocations[blkIndex].getHosts()));
}
} else { //文件不能切分则将整个文件作为一个输入分片 InputSplit
splits.add(makeSplit(path, 0, length, blkLocations[0].getHosts()));
}
} else {
//输入文件为空,则对应的 Block块 所在节点也应该为空
splits.add(makeSplit(path, 0, length, new String[0]));
}
}
// Save the number of input files for metrics/loadgen
job.getConfiguration().setLong(NUM_INPUT_FILES, files.size());
LOG.debug("Total # of splits: " + splits.size());
return splits;
}
4.查看computeSplitSize()方法的具体实现:
protected long computeSplitSize(long blockSize, long minSize,
long maxSize) {
//对于默认情况,三个参数分别为:1,long.MAX_VALUE,128MB
//所以,表达式整体返回 128MB
return Math.max(minSize, Math.min(maxSize, blockSize));
}
所以,影响 map 任务数量的因素在于以上三个参数的设置:
- 默认情况 splitSize=blockSize,即一个 map 任务读取一个 block 块。
- 增加 minSize 超过 128M,则增加 splitSize,即 map 任务个数变小。
- 减小 maxSize 小于 128M,则减小 splitSize,即 map 任务个数变多。
Map 个数 = 文件大小 / 128M Reduce 个数 = 分区 Partitioner 个数 = 最终输出文件个数
注意:特殊压缩的 map 切分【即不可切分文件】
例题:假设HDFS上有一个大小75MB的文件,当客户端设置Block大小为64MB。则运行MR任务读取该文件时InputSplit大小为多少?
1) 如果该文件是普通文件,则应该是两个InputSplit分片:64MB 和 11MB。
2) 如果该文件是 gzip等压缩包格式的文件,则只有一个InputSplit分片:75MB。
Job流程:决定map个数的因素的更多相关文章
- hadoop控制map个数(转)
原文链接:https://blog.csdn.net/lylcore/article/details/9136555 hadooop提供了一个设置map个数的参数mapred.map.task ...
- hadoop之 map个数控制
hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map. ...
- Hadoop框架下MapReduce中的map个数如何控制
控制map个数的核心源码 long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job)); //getFormatMinS ...
- MapReduce中的map个数
在map阶段读取数据前,FileInputFormat会将输入文件分割成split.split的个数决定了map的个数.影响map个数(split个数)的主要因素有: 1) 文件的大小.当块(dfs. ...
- MapReduce的map个数调节 与 Hadoop的FileInputFormat的任务切分原理
在对日志等大表数据进行处理的时候需要人为地设置任务的map数,防止因map数过小导致集群资源被耗光.可根据大表的数据量大小设置每个split的大小. 例如设置每个split为500M: set map ...
- hadoop map 个数 源码分析
本文转自http://ronxin999.blog.163.com/blog/static/42217920201279112163/
- Job流程:Mapper类分析
此文紧接Job流程:决定map个数的因素,Map任务被提交到Yarn后,被ApplicationMaster启动,任务的形式是YarnChild进程,在其中会执行MapTask的run()方法.无论是 ...
- Job流程:提交MR-Job过程
1.一个标准 MR-Job 的执行入口: //参数 true 表示检查并打印 Job 和 Task 的运行状况 System.exit(job.waitForCompletion(true) ? 0 ...
- 如何在hadoop中控制map的个数
hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map. ...
随机推荐
- git+sourcetree创建仓库
1.git上创建版本库 2.安装sourcetree 3.创建空目录 我本地空目录为D:/shenghuojia 4.打开sourcetree,点击clone/new ,选择clone reposit ...
- 第十课——cluster故障转移操作,codis部署
作业描述] 1.cluster的故障转移操作,截图展示 2.部署codis,并写代码访问codis ================================================== ...
- Net Core MVC6 RC2 启动过程分析
入口程序 如果做过Web之外开发的人,应该记得这个是标准的Console或者Winform的入口.为什么会这样呢?.NET Web Development and Tools Blog ASP.NET ...
- 购物车-删除单行商品-HTMLTableElement.deleteRow()
wta 问题发源的代码: /*删除单行商品*/ function deleteRow(rowId){ var Index=document.getElementById(rowId).rowIndex ...
- Gartner提出的7种多租户模型
下面,我们就来看看在SaaS应用搭建过程中,可以采用什么样的多租户模型.从而能较为清晰地了解未来使用PaaS平台开发的SaaS,可以为用户提供哪些多租户的服务. Gartner提出了7种 ...
- 服务器端Session和客户端Session(和Cookie区别)2
https://blog.csdn.net/java_faep/article/details/78082802 我们可以得出如下结论: 关闭浏览器,只会是浏览器端内存里的session cookie ...
- 网络编程 - UDP协议
UDP协议 服务端 ''' UDP 协议 又称 数据报协议 SOCK_DGRAM ''' from socket import * # 一般不这样做 会重名 但写socket可以这样写 因为要用到太多 ...
- python常见模块之os模块
os模块是python系统与操作系统交互的一个接口 os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径 os.chdir("dirname") 改变当前 ...
- Intellij IDEA如何使用Maven Tomcat Plugin运行web项目
首先,Run ——> Edit Configurations,这时候如下图: 然后点击左上角的加号,可以添加一个新的配置,如下图: 选择Maven,如下图: 下面填上自己的配置信息,点击appl ...
- 使用python下载一些链接的软件包
import reimport requestsimport osimport wget get = raw_input("please input your link::")pa ...