★★★☆   输入文件:defense.in   输出文件:defense.out   简单对比
                      时间限制:1 s   内存限制:128 MB

题目描述:

近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了。可是A国上层现在还犹豫不决,到底该把哪些城市作为保护对象呢?又由于A国的经费有限,所以希望你能帮忙完成如下的一个任务:

  1. 给出你所有的A国城市坐标

  2. A国上层经过讨论,考虑到经济问题,决定取消对i城市的保护,也就是说i城市不需要在防线内了

  3. A国上层询问对于剩下要保护的城市,修建防线的总经费最少是多少

你需要对每次询问作出回答。注意单位1长度的防线花费为1。

A国的地形是这样的,形如下图,x轴是一条河流,相当于一条天然防线,不需要你再修建

A国总是有两个城市在河边,一个点是(0,0),一个点是(n,0),其余所有点的横坐标均大于0小于n,纵坐标均大于0。A国有一个不在(0,0)和(n,0)的首都。(0,0),(n,0)和首都这三个城市是一定需要保护的。

上图中,A,B,C,D,E点为A国城市,且目前都要保护,那么修建的防线就会是A-B-C-D,花费也就是线段AB的长度+线段BC的长度+线段CD的长度

如果,这个时候撤销B点的保护,那么防线变成下图

输入格式:

第一行,三个整数n,x,y分别表示河边城市和首都是(0,0),(n,0),(x,y)。

第二行,一个整数m。

接下来m行,每行两个整数a,b表示A国的一个非首都非河边城市的坐标为(a,b)。

再接下来一个整数q,表示修改和询问总数。

接下来q行每行要么形如1 i,要么形如2,分别表示撤销第i个城市的保护和询问。

输出格式:

对于每个询问输出1行,一个实数v,表示修建防线的花费,保留两位小数

样例输入:

4 2 1

2

1 2

3 2

5

2

1 1

2

1 2

2

样例输出:

6.47

5.84

4.47

数据范围:

30%的数据m<=1000,q<=1000

100%的数据m<=100000,q<=200000,n>1

所有点的坐标范围均在10000以内, 数据保证没有重点

题解:

  此题要求动态地去维护一个凸包的周长,我们可以发现,要想从凸包上删除一个点然后更新答案并不容易,因为凸包内部的点的信息不好维护,不妨把所有操作先存下来,离线反向操作。每碰到一个操作1,添加一个点,添加点无非是看这个点是在凸包的内部还是外部,内部的就不用管了,对答案并没有什么卵用,如果是在外部,就看在这个点左边的凸包上的点和右边凸包上的点会不会被覆盖,这个用向量的叉积判断即可

 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cstring>
#include<set>
using namespace std;
const double eps=1e-;
int n,x,y,m,q;
double now;
struct Q{
int kin,i;
double ans;
}opt[];
bool vis[];
struct P{
int x,y;
}p[],del[];
inline P operator-(P a,P b){
P t; t.x=a.x-b.x; t.y=a.y-b.y;
return t;
}
inline double operator*(P a,P b){
return a.x*b.y-b.x*a.y;
}
inline bool operator<(P a,P b){
if(a.x==b.x) return a.y<b.y;
return a.x<b.x;
}
inline double dis(P a,P b){
return sqrt((double)((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)));
} set<P> A;
inline void insert(int a,int b){
P x=(P){a,b};
set<P>::iterator r=A.lower_bound(x),l=r,t;
l--;
if((*l-x)*(*r-x)<) return ;
now-=dis(*l,*r);
A.insert(x);
while(r!=A.end()){
t=r; r++;
if((*r-x)*(*t-x)>) break;
now-=dis(*t,*r);
A.erase(t);
}
while(l!=A.begin()){
t=l; l--;
if((*t-x)*(*l-x)>) break;
now-=dis(*t,*l);
A.erase(t);
}
A.insert(x);
l=r=t=A.find(x);
l--; r++;
now+=dis(*l,x)+dis(*r,x);
} int main(){
// freopen("defense.in","r",stdin);
// freopen("defense.out","w",stdout);
scanf("%d%d%d",&n,&x,&y);
scanf("%d",&m);
for(int i=;i<=m;i++) scanf("%d%d",&p[i].x,&p[i].y);
scanf("%d",&q);
for(int i=;i<=q;i++){
scanf("%d",&opt[i].kin);
if(opt[i].kin==){
scanf("%d",&opt[i].i);
vis[opt[i].i]=true;
}
}
P cap; cap.x=x; cap.y=y;
now+=dis((P){,},cap); now+=dis((P){n,},cap);
A.insert((P){,}); A.insert((P){n,}); A.insert((P){x,y});
for(int i=;i<=m;i++){
if(vis[i]==false) insert(p[i].x,p[i].y);
}
for(int i=q;i>=;i--){
if(opt[i].kin==){
opt[i].ans=now;
}
else{
insert(p[opt[i].i].x,p[opt[i].i].y);
}
}
for(int i=;i<=q;i++){
if(opt[i].kin==){
printf("%.2lf\n",opt[i].ans);
}
}
return ;
}

cogs 547:[HAOI2011] 防线修建的更多相关文章

  1. 【BZOJ 2300】 2300: [HAOI2011]防线修建 (动态凸包+set)

    2300: [HAOI2011]防线修建 Description 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可是A国上 ...

  2. BZOJ 2300: [HAOI2011]防线修建( 动态凸包 )

    离线然后倒着做就变成了支持加点的动态凸包...用平衡树维护上凸壳...时间复杂度O(NlogN) --------------------------------------------------- ...

  3. [luogu P2521] [HAOI2011]防线修建

    [luogu P2521] [HAOI2011]防线修建 题目描述 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可是A国 ...

  4. P2521 [HAOI2011]防线修建

    题目链接:P2521 [HAOI2011]防线修建 题意:给定点集 每次有两种操作: 1. 删除一个点 (除开(0, 0), (n, 0), 与指定首都(x, y)) 2. 询问上凸包长度 至于为什么 ...

  5. bzoj千题计划236:bzoj2300: [HAOI2011]防线修建

    http://www.lydsy.com/JudgeOnline/problem.php?id=2300 维护动态凸包,人懒用的set 用叉积判断,不要用斜率 #include<set> ...

  6. 【BZOJ2300】[HAOI2011]防线修建 set维护凸包

    [BZOJ2300][HAOI2011]防线修建 Description 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可 ...

  7. 【题解】P2521 [HAOI2011]防线修建(动态凸包)

    [题解]P2521 [HAOI2011]防线修建(动态凸包) 凸包是易插入不好删除的东西,按照剧情所以我们时光倒流 然后问题就是维护凸包的周长,支持加入 本来很简单,但是计算几何就是一些小地方经验不足 ...

  8. BZOJ2300[HAOI2011]防线修建——非旋转treap+凸包(平衡树动态维护凸包)

    题目描述 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可是A国上层现在还犹豫不决,到底该把哪些城市作为保护对象呢?又由于 ...

  9. LG2521 [HAOI2011]防线修建

    题意 题目描述 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可是A国上层现在还犹豫不决,到底该把哪些城市作为保护对象呢? ...

随机推荐

  1. angular中的子路由用法

    Angular ui-route的用法 引入angular和使用angular子路由时需要的依赖模块angular-ui-route.js.并且在html中将路由要插入的位置写上.而在js部分中和an ...

  2. 原生封装的ajax

    原生封装的ajax的代码如下: //将数据转换成 a=1&b=2格式; function json2url(json){ var arr = []; //加随机数防止缓存; json.t = ...

  3. Netty 应用程序的一个一般准则:尽可能的重用 EventLoop,以减少线程创建所带来的开销。

    Netty 系列一(核心组件和实例). - JMCui - 博客园 https://www.cnblogs.com/jmcui/p/9154842.html 阅读目录 一.概念 二.核心组件 三.实例 ...

  4. Microservices 微服务概念和优点 自治 弹性 级联故障 微服务的问题 CAP 分布式事务 修改一个服务并对其部署而不影响其他任务服务

    https://en.wikipedia.org/wiki/Microservices https://zh.wikipedia.org/wiki/微服務 微服務 (Microservices) 是一 ...

  5. Spark源码分析 -- SchedulableBuilder

    SchedulableBuilder就是对Scheduleable tree的封装, 在Pool层面(中间节点), 完成对TaskSet的调度(FIFO, FAIR) 在TaskSetManager ...

  6. DEV中gridview常用属性

    1.隐藏最上面的GroupPanel: gridView1.OptionsView.ShowGroupPanel=false; 2.得到当前选定记录某字段的值: sValue=Table.Rows[g ...

  7. 悼念512汶川大地震遇难同胞——珍惜现在,感恩生活--hdu2191(多重背包模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2191 标准的多重背包 题目 有N种物品和一个容量为V的背包.第i种物品最多有n[i]件可用,每件费用是 ...

  8. 前端框架之SweetAlert

    简介 SweetAlert是一款很好用的弹出框框架 下载 点我下载 导入 博主用的是bootstrap-sweetalert,所以要依赖bootstrap,导入前先导入原生jQuery以及bootst ...

  9. python学习笔记(二十三)私有方法和私有属性

    在Class内部,可以有属性和方法,而外部代码可以通过直接调用实例变量的方法来操作数据,这样,就隐藏了内部的复杂逻辑. 但是,从前面Person类的定义来看,外部代码还是可以自由地修改一个实例的nam ...

  10. LNMP环境修改上传文件大小

    LNMP环境修改上传文件大小限制     如果网页上传文件大小大于nginx或php设定的值,就会造成无法上传,显示IO error错误. 如何解决这个问题呢?我们需要更改两个配置: 1.  ngin ...