LINK


思路

首先是考虑怎么设计dp的状态

发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了

然后发现无论是什么时候一个状态到另一个状态的转移都是固定的方式

所以可以预处理转移矩阵用矩阵快速幂进行优化

但是如果在计算的时候暴力\(状态^3\)进行转移会TLE

但是注意到在这个时候有用的状态其实只有一个向量

所以就预处理倍增然后用向量乘矩阵来优化到单次\(logn状态^2\)就可以了

有点卡常


//Author: dream_maker
#include<bits/stdc++.h>
using namespace std;
//----------------------------------------------
//typename
typedef long long ll;
//convenient for
#define fu(a, b, c) for (int a = b; a <= c; ++a)
#define fd(a, b, c) for (int a = b; a >= c; --a)
#define fv(a, b) for (int a = 0; a < (signed)b.size(); ++a)
//inf of different typename
const int INF_of_int = 1e9;
const ll INF_of_ll = 1e18;
//fast read and write
template <typename T>
void Read(T &x) {
bool w = 1;x = 0;
char c = getchar();
while (!isdigit(c) && c != '-') c = getchar();
if (c == '-') w = 0, c = getchar();
while (isdigit(c)) x = (x<<1) + (x<<3) + c -'0', c = getchar();
if (!w) x = -x;
}
template <typename T>
void Write(T x) {
if (x < 0) putchar('-'), x = -x;
if (x > 9) Write(x / 10);
putchar(x % 10 + '0');
}
//----------------------------------------------
const int N = 170;
const int Mod = 998244353;
ll n, m, K, cnt = 0;
int inv[10];
int id[9][9][9];
struct Matrix{
int t[N][N];
Matrix() { memset(t, 0, sizeof(t));}
}trans, g[61];
inline int add(int a, int b) { return ((a += b) > Mod) ? (a - Mod) : a; }
inline int mul(int a, int b) { return 1ll * a * b % Mod; }
Matrix operator * (const Matrix a, const Matrix b) {
Matrix c;
fu(k, 0, cnt)
fu(i, 0, cnt) if (a.t[i][k])
fu(j, 0, cnt)
c.t[i][j] = add(c.t[i][j], mul(a.t[i][k], b.t[k][j]));
return c;
}
inline Matrix mul_matrix(Matrix a, Matrix b) {
Matrix c;
fu(k, 0, cnt) if(a.t[0][k])
fu(j, 0, cnt)
c.t[0][j] = add(c.t[0][j], mul(a.t[0][k], b.t[k][j]));
return c;
}
inline int fast_pow(int a, int b) {
int ans = 1;
while (b) {
if (b & 1) ans = mul(ans, a);
b >>= 1;
a = mul(a, a);
}
return ans;
}
inline int get_add_id(int i, int j, int k) {
if (i + j + k == K) return id[i][j][k];
if (m == 1) return id[i + 1][j][k];
if (m == 2) return id[i][j + 1][k];
if (m == 3) return id[i][j][k + 1];
}
void init() {
fu(i, 1, K + 1)inv[i] = fast_pow(i, Mod - 2);
int upj, upk, ID, inv_sum;
fu(i, 0, K) {
upj = (m == 1)? 0 : K - i;
fu(j, 0, upj) {
upk = (m == 2)? 0 : K - i - j;
fu(k, 0, upk) id[i][j][k] = ++cnt;
}
}
++cnt;
trans.t[cnt][cnt] = 1;
fu(i, 0, K) {
upj = (m == 1)? 0 : K - i;
fu(j, 0, upj) {
upk = (m == 2)? 0 : K - i - j;
fu(k, 0, upk) {
ID = id[i][j][k], inv_sum = inv[i + j + k + 1];
if (i) trans.t[ID][id[i - 1][j][k]] = mul(inv_sum, i);
if (j) trans.t[ID][get_add_id(i + 1, j - 1, k)] = mul(inv_sum, j);
if (k) trans.t[ID][get_add_id(i, j + 1, k - 1)] = mul(inv_sum, k);
trans.t[ID][ID] = trans.t[ID][cnt] = inv_sum;
}
}
}
g[0] = trans;
fu(i, 1, 60) g[i] = g[i - 1] * g[i - 1];
}
int main() {
#ifdef dream_maker
freopen("input.txt","r",stdin);
#endif
int T;Read(T);
Read(m); Read(K);
init();
int pre = get_add_id(0, 0, 0);
while (T--) {
Read(n);
Matrix ans;
ans.t[0][pre] = 1;
fu(i, 0, 60)
if ((n >> i) & 1) ans = mul_matrix(ans, g[i]);
printf("%d\n", ans.t[0][cnt]);
}
return 0;
}

LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】的更多相关文章

  1. LOJ2325「清华集训 2017」小Y和恐怖的奴隶主

    题目链接 首先dp很显然,\(f(i,s)\)表示到了第i轮,各种血量人数的情况为s今后的期望攻击boss次数.那么有\(f(i,s)=\frac{1}{num+1}*\sum_{s->s'}( ...

  2. loj #2325. 「清华集训 2017」小Y和恐怖的奴隶主

    #2325. 「清华集训 2017」小Y和恐怖的奴隶主 内存限制:256 MiB时间限制:2000 ms标准输入输出 题目类型:传统评测方式:文本比较   题目描述 "A fight? Co ...

  3. 【loj2325】「清华集训 2017」小Y和恐怖的奴隶主 概率dp+倍增+矩阵乘法

    题目描述 你有一个m点生命值的奴隶主,奴隶主受伤未死且当前随从数目不超过k则再召唤一个m点生命值的奴隶主. T次询问,每次询问如果如果对面下出一个n点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输 ...

  4. LibreOJ #2325. 「清华集训 2017」小Y和恐怖的奴隶主(矩阵快速幂优化DP)

    哇这题剧毒,卡了好久常数才过T_T 设$f(i,s)$为到第$i$轮攻击,怪物状态为$s$时对boss的期望伤害,$sum$为状态$s$所表示的怪物个数,得到朴素的DP方程$f(i,s)=\sum \ ...

  5. Loj #2324. 「清华集训 2017」小 Y 和二叉树

    Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上, ...

  6. [LOJ#2324]「清华集训 2017」小Y和二叉树

    [LOJ#2324]「清华集训 2017」小Y和二叉树 试题描述 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙 ...

  7. [LOJ#2323]「清华集训 2017」小Y和地铁

    [LOJ#2323]「清华集训 2017」小Y和地铁 试题描述 小Y是一个爱好旅行的OIer.一天,她来到了一个新的城市.由于不熟悉那里的交通系统,她选择了坐地铁. 她发现每条地铁线路可以看成平面上的 ...

  8. 【UOJ#340】【清华集训2017】小 Y 和恐怖的奴隶主(矩阵快速幂,动态规划)

    [UOJ#340][清华集训2017]小 Y 和恐怖的奴隶主(矩阵快速幂,动态规划) 题面 UOJ 洛谷 题解 考虑如何暴力\(dp\). 设\(f[i][a][b][c]\)表示当前到了第\(i\) ...

  9. loj2324 「清华集训 2017」小 Y 和二叉树

    https://loj.ac/problem/2324 太智障,一开始以为中序遍历的第一个点一定是一个叶子,想了个贪心.然而,手算了一下,第一个点都过不了啊. input 5 2 3 4 1 3 3 ...

随机推荐

  1. Docker 推送镜像到 阿里Docker镜像

    登录 阿里云Docker镜像 https://cr.console.aliyun.com 创建一个镜像 成功之后点击  “管理” 阿里有详细的 使用说明 PS : 注意的地方是 sudo docker ...

  2. bugfree登录后报错PHP Fatal error: Call-time pass-by-reference has been removed in

    详细报错信息[Tue Apr 25 06:49:07.556316 2017] [:error] [pid 21799] [client *.*.*.*:55813] PHP Fatal error: ...

  3. UVa 11324 最大团(强连通分量缩点)

    https://vjudge.net/problem/UVA-11324 题意:给一张有向图G,求一个结点数最大的结点集,使得该结点集中任意两个结点u和v满足,要么u可以到达v,要么v可以达到u. 思 ...

  4. P3600 随机数生成器

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  5. springboot统一异常处理及返回数据的处理

    一.返回code数据的处理 代码: Result.java /** * http请求返回的最外层对象 * Created by 廖师兄 * 2017-01-21 13:34 */ public cla ...

  6. 先安装ubuntu,后安装windows,修复启动grub

    使用easybcd修复未果,直接使用启动盘修复,主要根据这个帖子来的,验证可用 http://blog.csdn.net/kevin6216/article/details/7764292 由于重装w ...

  7. 搞懂分布式技术12:分布式ID生成方案

    搞懂分布式技术12:分布式ID生成方案 ## 转自: 58沈剑 架构师之路 2017-06-25 一.需求缘起 几乎所有的业务系统,都有生成一个唯一记录标识的需求,例如: 消息标识:message-i ...

  8. css3 transform matrix矩阵的使用

      Transform 执行顺序问题 — 后写先执行 matrix(a,b,c,d,e,f) 矩阵函数 •通过矩阵实现缩放 x轴缩放 a=x*a    c=x*c     e=x*e; y轴缩放 b= ...

  9. IOS-数据缓存

    一.关于同一个URL的多次请求 有时候,对同一个URL请求多次,返回的数据可能都是一样的,比如服务器上的某张图片,无论下载多少次,返回的数据都是一样的. 上面的情况会造成以下问题 (1)用户流量的浪费 ...

  10. day19 Models补充+缓存+信号+序列化+分析抽屉页面

    参考链接: http://www.cnblogs.com/wupeiqi/articles/5237704.html http://www.cnblogs.com/wupeiqi/articles/5 ...