LRU算法的Python实现
http://flychao88.iteye.com/blog/1977653文章中介绍了常见的几种缓存淘汰策略
LRU:least recently used,最近最少使用算法。其实就是按使用时间倒排序,然后从尾部删除元素。它的使用场景是:在有限的空间中存储对象时,当空间满时,会按一定的原则删除原有的对象,常用的原则(算法)有LRU,FIFO,LFU等。在计算机的Cache硬件,以及主存到虚拟内存的页面置换,还有Redis缓存系统中都用到了该算法。我在一次面试和一个笔试时,也遇到过这个问题。
LRU的算法是比较简单的,当对key进行访问时(一般有查询,更新,增加,在get()和set()两个方法中实现即可)时,将该key放到队列的最前端(或最后端)就行了,这样就实现了对key按其最后一次访问的时间降序(或升序)排列,当向空间中增加新对象时,如果空间满了,删除队尾(或队首)的对象。
在Python中,可以使用collections.OrderedDict很方便的实现LRU算法,当然,如果你想不到用OrderedDict,那可以用dict+list来实现。本文主要参考了LRU CACHE IN PYTHON,写的非常好,既实现了功能,又简洁易读。方法一的代码与参考文章基本相同,方法二是我自己想出来的,比较繁琐一些,其实OrderedDict本身也是类似的这种机制来实现的有序。
不过,下面的实现是有问题的,这个cache的key:value键值对中,value只能是不可变类型。因为,如果value是可变类型,那对于同一个key,所有调用get(key)方法返回的value都是指向同一个可变对象的,当修改其中一个value时,那所有的value都会被修改了,即使你没有调用set()方法也会这样。这是我们不希望看到的。解决方法我想到了两种,一是可变对象序列化后再存储,即将可变对象转为不可变对象;二是仍存储可变对象,但get()时,返回一个深拷贝,这样每个get()调用返回的对象就不会相互影响了。推荐第一种方法。另外,对于key,推荐使用str/unicode类型。
当并发时,还会存在一个问题,因为这涉及到对公共资源的写操作,所以必须要对set()加锁。其实,在并发情况下,所有对公共资源的写操作都要加锁。如果不存在并发的情况,只有单线程,那可以不加锁。
方法一:用OrderedDict实现(推荐)
from collections import OrderedDict class LRUCache(OrderedDict):
'''不能存储可变类型对象,不能并发访问set()''' def __init__(self,capacity):
self.capacity = capacity
self.cache = OrderedDict() def get(self,key):
if self.cache.has_key(key):
value = self.cache.pop(key)
self.cache[key] = value
else:
value = None return value def set(self,key,value):
if self.cache.has_key(key):
value = self.cache.pop(key)
self.cache[key] = value
else:
if len(self.cache) == self.capacity:
self.cache.popitem(last = False) #pop出第一个item
self.cache[key] = value
else:
self.cache[key] = value
测试代码如下
c = LRUCache(5) for i in range(5,10):
c.set(i,10*i) print c.cache, c.cache.keys() c.get(5)
c.get(7) print c.cache, c.cache.keys() c.set(10,100)
print c.cache, c.cache.keys() c.set(9,44)
print c.cache, c.cache.keys()
输出如下
OrderedDict([(5, 50), (6, 60), (7, 70), (8, 80), (9, 90)]) [5, 6, 7, 8, 9]
OrderedDict([(6, 60), (8, 80), (9, 90), (5, 50), (7, 70)]) [6, 8, 9, 5, 7]
OrderedDict([(8, 80), (9, 90), (5, 50), (7, 70), (10, 100)]) [8, 9, 5, 7, 10]
OrderedDict([(8, 80), (5, 50), (7, 70), (10, 100), (9, 90)]) [8, 5, 7, 10, 9]
方法二:用dict+list实现(不推荐)
class LRUCache(object):
'''不能存储可变类型对象,不能并发访问set()''' def __init__(self,capacity):
self.l = []
self.d = {}
self.capacity = capacity def get(self,key):
if self.d.has_key(key):
value = self.d[key]
self.l.remove(key)
self.l.insert(0,key)
else:
value = None return value def set(self,key,value):
if self.d.has_key(key):
self.l.remove(key)
elif len(self.d) == self.capacity:
oldest_key = self.l.pop()
self.d.pop(oldest_key) self.d[key] = value
self.l.insert(0, key)
测试代码如下
c = LRUCache(5) for i in range(5,10):
c.set(i,10*i) print c.d,c.l c.get(5)
c.get(7) print c.d,c.l c.set(10,100)
print c.d,c.l c.set(9,44)
print c.d,c.l
输出为
{8: 80, 9: 90, 5: 50, 6: 60, 7: 70} [9, 8, 7, 6, 5]
{8: 80, 9: 90, 5: 50, 6: 60, 7: 70} [7, 5, 9, 8, 6]
{5: 50, 7: 70, 8: 80, 9: 90, 10: 100} [10, 7, 5, 9, 8]
{5: 50, 7: 70, 8: 80, 9: 44, 10: 100} [9, 10, 7, 5, 8]
参考:
http://www.kunxi.org/blog/2014/05/lru-cache-in-python/
http://blog.sina.com.cn/s/blog_631d3a630101mhup.html
LRU算法的Python实现的更多相关文章
- python模拟页面调度LRU算法
所谓LRU算法,是指在发生缺页并且没有空闲主存块时,把最近最少使用的页面换出主存块,腾出地方来调入新页面. 问题描述:一进程获得n个主存块的使用权,对于给定的进程访问页面次序,问当采用LRU算法时,输 ...
- LRU算法原理解析
LRU是Least Recently Used的缩写,即最近最少使用,常用于页面置换算法,是为虚拟页式存储管理服务的. 现代操作系统提供了一种对主存的抽象概念虚拟内存,来对主存进行更好地管理.他将主存 ...
- Android图片缓存之Lru算法
前言: 上篇我们总结了Bitmap的处理,同时对比了各种处理的效率以及对内存占用大小.我们得知一个应用如果使用大量图片就会导致OOM(out of memory),那该如何处理才能近可能的降低oom发 ...
- 缓存淘汰算法--LRU算法
1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是"如果数据最近被访问过,那么将来被访问的几率也 ...
- 借助LinkedHashMap实现基于LRU算法缓存
一.LRU算法介绍 LRU(Least Recently Used)最近最少使用算法,是用在操作系统中的页面置换算法,因为内存空间是有限的,不可能把所有东西都放进来,所以就必须要有所取舍,我们应该把什 ...
- LinkedHashMap实现LRU算法
LinkedHashMap特别有意思,它不仅仅是在HashMap上增加Entry的双向链接,它更能借助此特性实现保证Iterator迭代按照插入顺序(以insert模式创建LinkedHashMap) ...
- LinkedHashMap 和 LRU算法实现
个人觉得LinkedHashMap 存在的意义就是为了实现 LRU 算法. public class LinkedHashMap<K,V> extends HashMap<K,V&g ...
- 简单LRU算法实现缓存
最简单的LRU算法实现,就是利用jdk的LinkedHashMap,覆写其中的removeEldestEntry(Map.Entry)方法即可,如下所示: java 代码 import java.ut ...
- 八大排序算法的 Python 实现
转载: 八大排序算法的 Python 实现 本文用Python实现了插入排序.希尔排序.冒泡排序.快速排序.直接选择排序.堆排序.归并排序.基数排序. 1.插入排序 描述 插入排序的基本操作就是将一个 ...
随机推荐
- Bootstrap学习笔记(3)--菜鸟网CDN
Bootstrap CDN 推荐 本站实例采用的是自建的静态资源库上的Bootstrap资源. <!-- 新 Bootstrap 核心 CSS 文件 --> <link href=& ...
- PDF文件的加载及展示
项目需要显示PDF文件,于是遍寻了网络,发现的方法以下几种: 1.使用UIWebView加载,没啥说的,根据文件路径,网络或者本地皆可,创建一个NSURLRequest,然后用webView加载就可以 ...
- Spider Studio 新版本 (20140225) - 设置菜单调整 / 提供JQueryContext布局相关的方法
这是年后的第一个新版本, 包含如下: 1. 先前去掉的浏览器设置功能又回来了! 说来惭愧, 去掉了这两个功能之后发现浏览经常会被JS错误打断, 很不方便, 于是乎又把它们给找回来了. :) 2. 为J ...
- 缓存技术PK:选择Memcached还是Redis(转)
[IT168 技术]要Memcached还是要Redis?在构建一款现代且由数据库驱动的Web应用程序并希望使其拥有更为出色的性能表现时,这个问题总会时不时出现.并给每一位开发人员带来困扰.在考虑对应 ...
- mysql 分区 限制
MySQL分区的限制 • 只能对数据表的整型列进行分区源码天空,或者数据列可以通过分区函数转化成整型列 • 最大分区数目不能超过1024 • 如果含有唯一索引或者主键,则分区列必须包含在所 ...
- C++ 运算符重载四(自定义数组类)
//自定义数组类 #include<iostream> using namespace std; //分析:能获取数组长度,添加元素,删除元素,修改元素 //要求重载[],=,==,!=运 ...
- php if语句判定ms查询是否为空
$select_re_id=$cnx->query("select count(*) c from Yid where pid='".$pid."' and gid ...
- 多媒体开发之rtsp---rtsp client 端的实现
http://blog.csdn.net/xyz_lmn/article/details/6055179 java实现 http://www.cnblogs.com/wohexiaocai/p/454 ...
- 【cf492】E. Vanya and Field(拓展欧几里得)
http://codeforces.com/contest/492/problem/E 一开始没时间想,,诶真是.. 挺水的一道题.. 将每个点的横坐标都转换成0,然后找纵坐标有多少即可..即解方程 ...
- 【BZOJ】1068: [SCOI2007]压缩(dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1068 发现如果只设一维的话无法转移 那么我们开第二维,发现对于前i个来说,如果确定了M在哪里,第i个 ...