ARIMA模型全称为自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出一著名时间序列预测方法 ,所以又称为box-jenkins模型、博克思-詹金斯法。其中ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项; MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数。所谓ARIMA模型,是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型。ARIMA模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA)、自回归过程(AR)、自回归移动平均过程(ARMA)以及ARIMA过程。

1. ARIMA的优缺点

优点: 模型十分简单,只需要内生变量而不需要借助其他外生变量。

缺点:
1.要求时序数据是稳定的(stationary),或者是通过差分化(differencing)后是稳定的。
2.本质上只能捕捉线性关系,而不能捕捉非线性关系。
注意,采用ARIMA模型预测时序数据,必须是稳定的,如果不稳定的数据,是无法捕捉到规律的。比如股票数据用ARIMA无法预测的原因就是股票数据是非稳定的,常常受政策和新闻的影响而波动。

2. 判断是时序数据是稳定的方法。

严谨的定义: 一个时间序列的随机变量是稳定的,当且仅当它的所有统计特征都是独立于时间的(是关于时间的常量)。
判断的方法:

  1. 稳定的数据是没有趋势(trend),没有周期性(seasonality)的; 即它的均值,在时间轴上拥有常量的振幅,并且它的方差,在时间轴上是趋于同一个稳定的值的。
  2. 可以使用Dickey-Fuller Test进行假设检验。(另起文章介绍)

股票预测 Python实现

步骤

本系统使用yahoo_finance,pandas,numpy,matplotlib,statsmodels,scipy,pywt这些包
1.从yahoo_finance包中获取股票信息,使用panda存储及处理数据,只提取其中Close属性,按照时间排序为时间序列。
2.对Close时序进行小波分解处理,选用DB4进行小波分解,消除噪音。
3.进行差分运算,使用panda包的diff()方法,并使用ADF检验进行平稳性检验,保证时间序列是平稳或趋于平稳的。
4.输出ACF,PACF图,确定p,q的值。
5.运用ARIMA模型对平稳序列进行预测,ARIMA(p,q)。
6.还原差分运算,得到股票预测时序。
 

输出图

本图顺序与步骤顺序无关,仅仅是作为一种直观的展示:
 

总结

ARIMA是一种处理时序的方法模型,可以作用于股票预测,但是效果只能说是一般,因为股市预测有一定的时序关系,却又不完全是基于时序关系,还有社会关系,公司运营,新闻,政策等影响,而且ARIMA使用的数据量仅仅只有一阶的Close属性。因此本模型可以作用在平稳发展,没有什么负面新闻和政策干扰的公司(不懂经济学,不知道对不对= =)。
 

Github

https://github.com/jerry81333/StockProdiction/
 
 

时间序列模式——ARIMA模型的更多相关文章

  1. ARIMA模型---时间序列分析---温度预测

    (图片来自百度) 数据 分析数据第一步还是套路------画图 数据看上去比较平整,但是由于数据太对看不出具体情况,于是将只取前300个数据再此画图 这数据看上去很不错,感觉有隐藏周期的意思 代码 # ...

  2. 时间序列模式(ARIMA)---Python实现

    时间序列分析的主要目的是根据已有的历史数据对未来进行预测.如餐饮销售预测可以看做是基于时间序列的短期数据预测, 预测的对象时具体菜品的销售量. 1.时间序列算法: 常见的时间序列模型; ​ 2.时序模 ...

  3. 用R做时间序列分析之ARIMA模型预测

    昨天刚刚把导入数据弄好,今天迫不及待试试怎么做预测,网上找的帖子跟着弄的. 第一步.对原始数据进行分析 一.ARIMA预测时间序列 指数平滑法对于预测来说是非常有帮助的,而且它对时间序列上面连续的值之 ...

  4. 【R实践】时间序列分析之ARIMA模型预测___R篇

    时间序列分析之ARIMA模型预测__R篇 之前一直用SAS做ARIMA模型预测,今天尝试用了一下R,发现灵活度更高,结果输出也更直观.现在记录一下如何用R分析ARIMA模型. 1. 处理数据 1.1. ...

  5. ARIMA模型总结

    时间序列建模基本步骤 获取被观测系统时间序列数据: 对数据绘图,观测是否为平稳时间序列:对于非平稳时间序列要先进行d阶差分运算,化为平稳时间序列: 经过第二步处理,已经得到平稳时间序列.要对平稳时间序 ...

  6. 时间序列预测之--ARIMA模型

    什么是 ARIMA模型 ARIMA模型的全称叫做自回归移动平均模型,全称是(ARIMA, Autoregressive Integrated Moving Average Model).也记作ARIM ...

  7. 【机器学习笔记之五】用ARIMA模型做需求预测用ARIMA模型做需求预测

    本文结构: 时间序列分析? 什么是ARIMA? ARIMA数学模型? input,output 是什么? 怎么用?-代码实例 常见问题? 时间序列分析? 时间序列,就是按时间顺序排列的,随时间变化的数 ...

  8. 时间序列分析模型——ARIMA模型

    时间序列分析模型——ARIMA模型 一.研究目的 传统的经济计量方法是以经济理论为基础来描述变量关系的模型.但经济理论通常不足以对变量之间的动态联系提供一个严密的说明,而且内生变量既可以出现在方程的左 ...

  9. 时间序列 ARIMA 模型 (三)

    先看下图: 这是1986年到2006年的原油月度价格.可见在2001年之后,原油价格有一个显著的攀爬,这时再去假定均值是一个定值(常数)就不太合理了,也就是说,第二讲的平稳模型在这种情况下就太适用了. ...

随机推荐

  1. java读properties文件 乱码

    java读properties文件,包含中文字符的主要有两种: 1.key中包含中文字符的(value中也有可能包含) 2.key中不包含中文字符的(value中有可能包含) 1.key中包含中文字符 ...

  2. 彻底征服 Spring AOP 之 理论篇

    基本知识 其实, 接触了这么久的 AOP, 我感觉, AOP 给人难以理解的一个关键点是它的概念比较多, 而且坑爹的是, 这些概念经过了中文翻译后, 变得面目全非, 相同的一个术语, 在不同的翻译下, ...

  3. CentOs下安装gcc/g++/gdb

    使用yum安装gcc:yum install gcc即可.使用:which gcc 查看是否安装成功 使用yum安装g++:yum install gcc-c++ 即可.使用:which g++ 查看 ...

  4. w3c html dom

    http://www.w3school.com.cn/ SQL语句学习 http://www.w3school.com.cn/sql/sql_like.asp

  5. LinQ的简单使用

    1.LinQ to Sql类(NET Language Integrated Query (LINQ) ) LINQ定义了大约40个查询操作符,如select.from.in.where以及order ...

  6. Fastcgi_Finish_Request 提高页面响应速度

    当PHP运行在FastCGI模式时,PHP FPM提供了一个名为fastcgi_finish_request的方法.按照文档上的说法,此方法可以提高请求的处理速度,如果有些处理可以在页面生成完后再进行 ...

  7. 回文树(回文自动机) - BZOJ 3676 回文串

    BZOJ 3676 回文串 Problem's Link: http://www.lydsy.com/JudgeOnline/problem.php?id=3676 Mean: 略 analyse: ...

  8. 测试网站访问速度的方法(GTmetrix)

     全方位的免费网站速度测试工具 — GTmetrix 它结合了Google Page Speed和Yahoo! YSlow的网页速度测试功能,并且提供可行的建议帮你改善网站速度.会根据网站的具体情况, ...

  9. web 开发之nginx--- 阿里云部署nginx

    http://blog.csdn.net/zhangjingyangguang/article/details/7441268 http://www.cnblogs.com/languoliang/a ...

  10. 【BZOJ】1626: [Usaco2007 Dec]Building Roads 修建道路(kruskal)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1626 依旧是水题..太水了.. #include <cstdio> #include & ...