题目链接:https://leetcode.com/problems/number-of-1-bits/description/

题目大意:与338题类似,求解某个无符号32位整数的二进制表示的1的个数。注意要求是无符号32位整数。

注意:无符号整数的范围是0~2^32-1,而普通int的范围是-2^31 ~ 2^31-1。

法一:直接用普通十进制转二进制的办法做,发现超时了,超时数据是2^31,当我把这个数放进eclipse中发现直接报错,至于为什么在leetcode里还可以编译通过,我也不知道。想看它的测试代码,发现并没有公开。代码如下:

     public int hammingWeight(int n) {
int cnt = 0;
while(n != 0) {
cnt += n & 1;
n >>= 1;
}
return cnt;
}

生气!这段代码用C++提交,AC了!耗时3ms,生气!

191.Number of 1Bits---位运算---《剑指offer》10的更多相关文章

  1. 【Java】 剑指offer(10) 旋转数组的最小数字

    本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转. ...

  2. 264. Ugly Number II(丑数 剑指offer 34)

    Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose prime factors ...

  3. 剑指Offer 10. 矩形覆盖 (递归)

    题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目地址 https://www.nowcoder.com/ ...

  4. 剑指offer 10矩形覆盖

    我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法 java版本: public class Solution { publ ...

  5. [剑指Offer] 10.矩形覆盖

    题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? [思路]可归纳得出结论: f(n) = f(n-1) + f ...

  6. [剑指offer] 10. 旋转数组的最小数字

    题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 思路: 利用dp[i]保存盖2*i的矩形有多少种办法. 通过 ...

  7. 剑指offer——10跳台阶演变

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   题解: 纯找规律题:   class Solution { public: ...

  8. 剑指offer 10:矩形覆盖

    题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? public class Solution { public ...

  9. 剑指offer 10.递归和循环 矩形覆盖

    题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?   当n=0时 ,target=0:   当n=1时 ,ta ...

  10. 剑指offer(10)

    题目: 输入一个整数数组,实现一个函数来调整该数组中数字的顺序,使得所有的奇数位于数组的前半部分,所有的偶数位于数组的后半部分,并保证奇数和奇数,偶数和偶数之间的相对位置不变. 思路: 如果忽略题目中 ...

随机推荐

  1. ZOJ1827_The Game of 31

    这是一个比较经典的博弈题目,今年网赛好像是南京赛上有一个类似的题目. 这种题目是没有一定公式或者函数的,需要自己dp或者搜索解决. 题意为分别给你4张写有1,2,3,4,5,6的卡片共24张,每次轮流 ...

  2. bzoj1061-[Noi2008]志愿者招募-单纯形 & 费用流

    有\(n\)天,\(m\)类志愿者,一个第\(i\)类志愿者可以从第\(s_i\)天工作到第\(t_i\)天,第\(i\)天工作的志愿者不少于\(b_i\)个.每一类志愿者都有单价\(c_i\),问满 ...

  3. BZOJ 1066:[SCOI2007]蜥蜴(最大流)

    蜥蜴Description在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱上站着一些蜥蜴,你的任务是让尽量多的蜥蜴逃到边界外. 每行每列中相邻石柱的距离为1,蜥蜴的跳跃距离是d,即蜥蜴可以跳到 ...

  4. 自动化生成html报告

    package Utils; import java.io.File; import java.util.Date; import org.apache.commons.lang3.time.Date ...

  5. 什么是P问题,NP问题和NPC问题

    转载自:Matrix67的博客 什么是P问题.NP问题和NPC问题 这或许是众多OIer最大的误区之一.    你会经常看到网上出现“这怎么做,这不是NP问题吗”.“这个只有搜了,这已经被证明是NP问 ...

  6. 拓展kmp总结

    借鉴自:https://blog.csdn.net/dyx404514/article/details/41831947 定义母串S,和子串T,设S的长度为n,T的长度为m,求T与S的每一个后缀的最长 ...

  7. EVE-NG硬盘扩容,存储海量镜像

    EVE-NG硬盘扩容,存储海量镜像 来源 http://blog.51cto.com/sms1107/1928453 一.查看当前磁盘使用情况 /dev/mapper/eve--ng--vg-root ...

  8. linux swap交换分区配置

    参考 http://commandos.blog.51cto.com/154976/115288/

  9. FindBugs错误修改指南 【转】

    FindBugs错误修改指南 1. EC_UNRELATED_TYPES Bug: Call to equals() comparing different types Pattern id: EC_ ...

  10. 嘘,如何激活更新的win10

    win10更新了,所以很坑的是以前的密钥又不管用了,系统和office都要重新激活,然而微软的更新就是很有恶意的,总之成功率堪忧. 还好看到了万能的网友的办法. slmgr.vbs /upk slmg ...