POJ-3659-最小支配集裸题/树形dp
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 7127 | Accepted: 2549 |
Description
Farmer John has decided to give each of his cows a cell phone in hopes to encourage their social interaction. This, however, requires him to set up cell phone towers on his N (1 ≤ N ≤ 10,000) pastures (conveniently numbered 1..N) so they can all communicate.
Exactly N-1 pairs of pastures are adjacent, and for any two pastures A and B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B) there is a sequence of adjacent pastures such that A is the first pasture in the sequence and B is the last. Farmer John can only place cell phone towers in the pastures, and each tower has enough range to provide service to the pasture it is on and all pastures adjacent to the pasture with the cell tower.
Help him determine the minimum number of towers he must install to provide cell phone service to each pasture.
Input
* Line 1: A single integer: N
* Lines 2..N: Each line specifies a pair of adjacent pastures with two space-separated integers: A and B
Output
* Line 1: A single integer indicating the minimum number of towers to install
Sample Input
5
1 3
5 2
4 3
3 5
Sample Output
2
Source
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
#define inf 0x3f3f3f3f
int f[][];
vector<int>g[];
void dfs(int u,int fa)
{
f[u][]=;
f[u][]=;
int sum=,inc=inf;
bool flag=;
for(int i=;i<g[u].size();++i){
int v=g[u][i];
if(v==fa) continue;
dfs(v,u);
if(f[v][]<=f[v][]){
sum+=f[v][];
flag=;
}
else{
sum+=f[v][];
inc=min(inc,f[v][]-f[v][]);
}
f[u][]+=min(f[v][],min(f[v][],f[v][]));
if(f[v][]!=inf&&f[u][]!=inf) f[u][]+=f[v][];///inf表示当前节点不会出现此状态
else f[u][]=inf;
}
if(inc==inf && flag==) f[u][]=inf;
else{
f[u][]=sum;
if(!flag) f[u][]+=inc;
}
if(f[u][]==) f[u][]=inf;
}
int main()
{
int n,i,j,k,u,v;
while(cin>>n){
for(i=;i<n;++i){
scanf("%d%d",&u,&v);
g[u].push_back(v);
g[v].push_back(u);
}
dfs(,);
cout<<min(f[][],f[][])<<endl;
for(i=;i<=n;++i) g[i].clear();
}
return ;
}
POJ-3659-最小支配集裸题/树形dp的更多相关文章
- 求树的最大独立集,最小点覆盖,最小支配集 贪心and树形dp
目录 求树的最大独立集,最小点覆盖,最小支配集 三个定义 贪心解法 树形DP解法 (有任何问题欢迎留言或私聊&&欢迎交流讨论哦 求树的最大独立集,最小点覆盖,最小支配集 三个定义 最大 ...
- POJ3659 Cell Phone Network(树上最小支配集:树型DP)
题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. ...
- POJ 3659 Cell Phone Network 最小支配集模板题(树形dp)
题意:有以个 有 N 个节点的树形地图,问在这些顶点上最少建多少个电话杆,可以使得所有顶点被覆盖到,一个节点如果建立了电话杆,那么和它直接相连的顶点也会被覆盖到. 分析:用最少的点覆盖所有的点,即为求 ...
- POJ 3659 Cell Phone Network(树的最小支配集)(贪心)
Cell Phone Network Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6781 Accepted: 242 ...
- POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心)-动态规划做法
POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心) Description Farmer John ...
- POJ 3398 Perfect Service --最小支配集
题目链接:http://poj.org/problem?id=3398 这题可以用两种上述讲的两种算法解:http://www.cnblogs.com/whatbeg/p/3776612.html 第 ...
- 树形dp(最小支配集)
http://poj.org/problem?id=3659 #include<iostream> #include<cstring> #include<algorith ...
- POJ 3398 Perfect Service(树型动态规划,最小支配集)
POJ 3398 Perfect Service(树型动态规划,最小支配集) Description A network is composed of N computers connected by ...
- 树形DP 树的最小支配集,最小点覆盖与最大独立集
最小支配集: 从V中选取尽量少的点组成一个集合,让V中剩余的点都与取出来的点有边相连. (点) 最小点覆盖: 从V中选取尽量少的点组成一个集合V1,让所有边(u,v)中要么u属于V1,要么v属于V1 ...
随机推荐
- 使用DAO工厂创建实现类对象
首先分析DAO模式中的每一部分 VO(对象实体):这个类成员变量与数据库中每个字段一一对应,同时提供了相应是set和get方法来设置或取得数值.这个类一般是通过IDE自动生成的 DAO(数据访问接口) ...
- python2和python3中range的区别
参考自 python2和python3中的range区别 - CSDN博客 http://blog.csdn.net/xiexingshishu/article/details/48581379 py ...
- [golang note] 变量常量
变量 • 变量声明 √ golang变量声明的关键字为var. √ golang变量声明时类型信息放置在变量名之后. ▶ 单个变量声明 ▪ 语法如下 var name type ▪ 示例如下 var ...
- Delphi程序调用C#.Net编译的DLL并打开窗体(详解)
Delphi程序调用C#.Net编译的DLL并打开窗体(详解)最近用C#.Net写了一个公用模块, 本以为仅提供给.Net程序使用, 但是领导要求把这些功能提供给旧系统使用, 天啦, 几套旧系统全是D ...
- 使用LocationManager来获取移动设备所在的地理位置信息
在Android应用程序中,可以使用LocationManager来获取移动设备所在的地理位置信息.看如下实例:新建android应用程序TestLocation. 1.activity_main.x ...
- 带宽、流量、CDN
1.啥叫带宽? 1.1 带宽的概念: 在网络中的带宽往往是指一个固定的时间内,能通过的最大位数据,即数据传输率.带宽是一个计量单位,用来计量单位时间内传输的数据量的多少. 1.2 计量单位: 这个数据 ...
- IOS开发如何入门
说到 iOS 开发,自己学得也很浅.不过至少独立一人完成了一个应用的开发到项目上线整个过程.分享一下自己的建议和想法. 首先建议阅读 Start Developing iOS Apps Today,你 ...
- The 15th UESTC Programming Contest Preliminary J - Jermutat1on cdoj1567
地址:http://acm.uestc.edu.cn/#/problem/show/1567 题目: Jermutat1on Time Limit: 3000/1000MS (Java/Others) ...
- Hbase Region Server整体架构
Region Server的整体架构 本文主要介绍Region的整体架构,后续再慢慢介绍region的各部分具体实现和源码 RegionServer逻辑架构图 RegionServer职责 1. ...
- @RequestMapping @SessionAttributes @ModelAttribute注解用法
简介: @RequestMapping RequestMapping是一个用来处理请求地址映射的注解,可用于类或方法上.用于类上,表示类中的所有响应请求的方法都是以该地址作为父路径. RequestM ...