1467: Pku3243 clever Y

Time Limit: 4 Sec  Memory Limit: 64 MB
Submit: 313  Solved: 181
[Submit][Status][Discuss]

Description

小Y发现,数学中有一个很有趣的式子: X^Y mod Z = K 给出X、Y、Z,我们都知道如何很快的计算K。但是如果给出X、Z、K,你是否知道如何快速的计算Y呢?

Input

本题由多组数据(不超过20组),每组测试数据包含一行三个整数X、Z、K(0 <= X, Z, K <= 10^9)。 输入文件一行由三个空格隔开的0结尾。

Output

对于每组数据:如果无解则输出一行No Solution,否则输出一行一个整数Y(0 <= Y < Z),使得其满足XY mod Z = K,如果有多个解输出最小的一个Y。

Sample Input

5 58 33
2 4 3
0 0 0

Sample Output

9
No Solution

HINT

 

Source

ghy

分析:扩展BSGS.对于P与A不互质的情况,我们就不断地提gcd出来,直到互质.然后换元套用普通的bsgs算法即可.具体的解法:--来自Clove_unique的博客.事实上只需要根据式子就可以用普通的BSGS算法了,求出x-k后,加上k就是x.

一个思想:从普通算法向扩展算法的延伸,如果由互质版本变成不互质版本,想办法变成互质版本,可以取gcd.一定要是等价变形.在变形的时候要判断无解的情况.

#include <cstdio>
#include <cmath>
#include <map>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; typedef long long ll; ll a, b, p, block;
map <ll, ll> m; ll gcd(ll a, ll b)
{
if (!b)
return a;
return gcd(b, a % b);
} ll qpow(ll a, ll b)
{
ll res = ;
while (b)
{
if (b & )
res = (res * a) % p;
a = (a * a) % p;
b >>= ;
}
return res;
} ll exbsgs(ll a, ll b, ll p)
{
if (b == )
return ;
ll temp = gcd(a, p), cnt = , t = ;
while (temp != )
{
if (b % temp != )
return -;
cnt++;
b /= temp;
p /= temp;
t = t * (a / temp) % p;
temp = gcd(a, p);
}
m.clear();
block = sqrt(p);
ll res = b, ta = qpow(a, block);
for (ll i = ; i <= block; i++)
{
res = res * a % p;
m[res] = i;
}
for (ll i = ; i <= block; i++)
{
t = t * ta % p;
if (m[t])
return i * block - m[t] + cnt;
}
return -;
} int main()
{
while (scanf("%lld%lld%lld", &a, &p, &b) && a && b && p)
{
ll ans = exbsgs(a % p, b % p, p);
if (ans != -)
printf("%lld\n", ans);
else
puts("No Solution");
} return ;
}

bzoj1467 Pku3243 clever Y的更多相关文章

  1. 【EX_BSGS】BZOJ1467 Pku3243 clever Y

    1467: Pku3243 clever Y Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 425  Solved: 238[Submit][Status ...

  2. 【BZOJ1467/2480】Pku3243 clever Y/Spoj3105 Mod EXBSGS

    [BZOJ1467/2480]Pku3243 clever Y/Spoj3105 Mod Description 已知数a,p,b,求满足a^x≡b(mod p)的最小自然数x. Input      ...

  3. bzoj 1467: Pku3243 clever Y 扩展BSGS

    1467: Pku3243 clever Y Time Limit: 4 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description 小 ...

  4. poj 3243 Clever Y && 1467: Pku3243 clever Y【扩展BSGS】

    扩展BSGS的板子 对于gcd(a,p)>1的情况 即扩展BSGS 把式子变成等式的形式: \( a^x+yp=b \) 设 \( g=gcd(a,p) \) 那么两边同时除以g就会变成: \( ...

  5. [拓展Bsgs] Clever - Y

    题目链接 Clever - Y 题意 有同余方程 \(X^Y \equiv K\ (mod\ Z)\),给定\(X\),\(Z\),\(K\),求\(Y\). 解法 如题,是拓展 \(Bsgs\) 板 ...

  6. poj3243 Clever Y[扩展BSGS]

    Clever Y Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 8666   Accepted: 2155 Descript ...

  7. luogu2485 [SDOI2011]计算器 poj3243 Clever Y BSGS算法

    BSGS 算法,即 Baby Step,Giant Step 算法.拔山盖世算法. 计算 \(a^x \equiv b \pmod p\). \(p\)为质数时 特判掉 \(a,p\) 不互质的情况. ...

  8. 【POJ 3243】Clever Y 拓展BSGS

    调了一周,我真制杖,,, 各种初始化没有设为1,,,我当时到底在想什么??? 拓展BSGS,这是zky学长讲课的课件截屏: 是不是简单易懂.PS:聪哥说“拓展BSGS是偏题,省选不会考,信我没错”,那 ...

  9. 【POJ】3243 Clever Y

    http://poj.org/problem?id=3243 题意:求$a^y \equiv b \pmod{p}$最小的$y$.(0<=x, y, p<=10^9) #include & ...

随机推荐

  1. Java实现网上商城

    // 第一个JavaWeb项目 //练手项目没有使用框架 github下载 https://github.com/dejavudwh/Online-Shopping 项目截图 1.基本实现了购物网站该 ...

  2. 【坚持】Selenium+Python学习之从读懂代码开始 DAY2

    2018/05/10 [来源:菜鸟教程](http://www.runoob.com/python3/python3-examples.html) #No.1 # 二次方程式 ax**2 + bx + ...

  3. Java如何调用shell脚本的

    有些时候会碰到这样的场景:java的功能里面要嵌入一个功能点,这个功能是通过是shell脚本实现的.这种时候就需要Java对脚本调用的支持了. 测试环境 Ubuntu16.04 i3-6100,12G ...

  4. 我想这次我真的理解了 JavaScript 的单线程机制

    今天面试的时候被问到一个问题,是关于 JS 异步的.当时我脑海中闪过了一个单线程的概念,但却没有把真正的原理阐述清楚.所以回来特意重新回顾了前面单线程和异步相关的一些知识点. 虽然之前学习的时候也接触 ...

  5. 局域网安全-MAC Flood/Spoof

    原文发表于:2010-09-22 转载至cu于:2012-07-21 很早之前就看过秦柯讲的局域网安全的视频.但是看了之后在实际工作当中很少用到(指我个人的工作环境中,惭愧啊…),时间长了,好多技术细 ...

  6. 【ZABBIX】ZABBIX3.2升级3.4

    小贴士 1.停止zabbix服务 service zabbix_server stop service zabbix_agentd stop /usr/local/zabbix/sbin/zabbix ...

  7. 袋鼠云旗下新公司云掣科技启航,深耕云MSP业务助推企业数字化转型

    1983年3月15日,国际消费者联盟组织将3月15日确立为国际消费者权益日. 2019年3月15日,袋鼠云举办三周年年会. 一生二,二生三,三生万物.植树节后,万物生长. 年会现场,袋鼠云宣布成立新公 ...

  8. 无法找到 ContextLoaderListener 类

    问题:java.lang.ClassNotFoundException: org.springframework.web.context.ContextLoaderListener 原因:Eclips ...

  9. FPGA的过去,现在和未来

    我们知道,相对于专业的ASIC,FPGA有上市时间和成本上的优势.另外,在大多数情况下,FPGA执行某些功能较之CPU上的软件操作更高效.这就是为什么我们认为它不但会运用在数据中心的服务器.交换器.存 ...

  10. LeetCode 206. Reverse Linked List(C++)

    题目: Reverse a singly linked list. Example: Input: 1->2->3->4->5->NULL Output: 5->4 ...