原文:http://blog.csdn.net/yang_xian521/article/details/7107786

我记得开始接触OpenCV就是因为一个算法里面需要2维动态数组,那时候看core这部分也算是走马观花吧,随着使用的增多,对Mat这个结构越来越喜爱,也觉得有必要温故而知新,于是这次再看看Mat。

Mat最大的优势跟STL很相似,都是对内存进行动态的管理,不需要之前用户手动的管理内存,对于一些大型的开发,有时候投入的lpImage内存管理的时间甚至比关注算法实现的时间还要多,这显然是不合适的。除了有些嵌入式场合必须使用c语言,我任何时候都强烈像大家推荐Mat。

Mat这个类有两部分数据。一个是matrix header,这部分的大小是固定的,包含矩阵的大小,存储的方式,矩阵存储的地址等等。另一个部分是一个指向矩阵包含像素值的指针。

  1. Mat A, C; // creates just the header parts
  2. A = imread(argv[1], CV_LOAD_IMAGE_COLOR); // here we’ll know the method used (allocate matrix)
  3. Mat B(A); // Use the copy constructor
  4. C = A; // Assignment operator

需要注意的是,copy这样的操作只是copy了矩阵的matrix header和那个指针,而不是矩阵的本身,也就意味着两个矩阵的数据指针指向的是同一个地址,需要开发者格外注意。比如上面这段程序,A、B、C指向的是同一块数据,他们的header不同,但对于A的操作同样也影响着B、C的结果。刚刚提高了内存自动释放的问题,那么当我不再使用A的时候就把内存释放了,那时候再操作B和C岂不是很危险。不用担心,OpenCV的大神为我们已经考虑了这个问题,是在最后一个Mat不再使用的时候才会释放内存,咱们就放心用就行了。

如果想建立互不影响的Mat,是真正的复制操作,需要使用函数clone()或者copyTo()。

说到数据的存储,这一直就是一个值得关注的问题,Mat_<uchar>对应的是CV_8U,Mat_<uchar>对应的是CV_8U,Mat_<char>对应的是CV_8S,Mat_<int>对应的是CV_32S,Mat_<float>对应的是CV_32F,Mat_<double>对应的是CV_64F,对应的数据深度如下:

• CV_8U - 8-bit unsigned integers ( 0..255 )

• CV_8S - 8-bit signed integers ( -128..127 )

• CV_16U - 16-bit unsigned integers ( 0..65535 )

• CV_16S - 16-bit signed integers ( -32768..32767 )

• CV_32S - 32-bit signed integers ( -2147483648..2147483647 )

• CV_32F - 32-bit floating-point numbers ( -FLT_MAX..FLT_MAX, INF, NAN )

• CV_64F - 64-bit floating-point numbers ( -DBL_MAX..DBL_MAX, INF, NAN )

这里还需要注意一个问题,很多OpenCV的函数支持的数据深度只有8位和32位的,所以要少使用CV_64F,但是vs的编译器又会把float数据自动变成double型,有些不太爽。

还有个需要注意的问题,就是流操作符<<对于Mat的操作,仅限于Mat是2维的情况。

还有必要说一下Mat的存储是逐行的存储的。

再说说Mat的创建,方式有两种,罗列一下:1.调用create(行,列,类型)2.Mat(行,列,类型(值))。例如:

  1. // make a 7x7 complex matrix filled with 1+3j.
  2. Mat M(7,7,CV_32FC2,Scalar(1,3));
  3. // and now turn M to a 100x60 15-channel 8-bit matrix.
  4. // The old content will be deallocated
  5. M.create(100,60,CV_8UC(15));

要是想创建更高维的矩阵,要写成下面的方式

  1. // create a 100x100x100 8-bit array
  2. int sz[] = {100, 100, 100};
  3. Mat bigCube(3, sz, CV_8U, Scalar::all(0));

对于矩阵的行操作或者列操作,方式如下:(注意对列操作时要新建一个Mat,我想应该跟列地址不连续有关)

  1. // add the 5-th row, multiplied by 3 to the 3rd row
  2. M.row(3) = M.row(3) + M.row(5)*3;
  3. // now copy the 7-th column to the 1-st column
  4. // M.col(1) = M.col(7); // this will not work
  5. Mat M1 = M.col(1);
  6. M.col(7).copyTo(M1);

下面的东西就比较狂暴了,对于外来的数据,比如你从别的地方接受了一幅图片,但可以不是Mat结构的,而只有一个数据的指针,看看接下来的代码是如何应付的,重点哦,亲

  1. void process_video_frame(const unsigned char* pixels,
  2. int width, int height, int step)
  3. {
  4. Mat img(height, width, CV_8UC3, pixels, step);
  5. GaussianBlur(img, img, Size(7,7), 1.5, 1.5);
  6. }

亲,有木有很简单!!!

还有一种快速初始化数据的办法,如下:

  1. double m[3][3] = {{a, b, c}, {d, e, f}, {g, h, i}};
  2. Mat M = Mat(3, 3, CV_64F, m).inv();

也可以把原来的IplImage格式的图片直接用Mat(IplImage)的方式转成Mat结构,也可以像Matlab一样调用zeros()、ones()、eye()这样的函数进行初始化。

如果你需要提前释放数据的指针和内存,可以调用release()。

对于数据的获取,当然还是调用at<float>(3, 3)这样的格式为最佳。其他的方法我甚少尝试,就不敢介绍了。

最后要提的一点是关于Mat的表达式,这个也非常多,加减乘除,转置求逆,我怎么记得我以前介绍过呢。那就不多说啦~

OpenCV学习笔记(四十)——再谈OpenCV数据结构Mat详解的更多相关文章

  1. qml学习笔记(二):可视化元素基类Item详解(上半场anchors等等)

    原博主博客地址:http://blog.csdn.net/qq21497936本文章博客地址:http://blog.csdn.net/qq21497936/article/details/78516 ...

  2. 【Ext.Net学习笔记】03:Ext.Net DirectEvents用法详解、DirectMethods用法详解

    Ext.Net通过DirectEvents进行服务器端异步的事件处理.[Ext.Net学习笔记]02:Ext.Net用法概览.Ext.Net MessageBus用法.Ext.Net布局 中已经简单的 ...

  3. <转>ASP.NET学习笔记之MVC 3 数据验证 Model Validation 详解

    MVC 3 数据验证 Model Validation 详解  再附加一些比较好的验证详解:(以下均为引用) 1.asp.net mvc3 的数据验证(一) - zhangkai2237 - 博客园 ...

  4. [原创]java WEB学习笔记43:jstl 介绍,core库详解:表达式操作,流程控制,迭代操作,url操作

    本博客为原创:综合 尚硅谷(http://www.atguigu.com)的系统教程(深表感谢)和 网络上的现有资源(博客,文档,图书等),资源的出处我会标明 本博客的目的:①总结自己的学习过程,相当 ...

  5. 【opencv学习笔记四】opencv3.4.0图形用户接口highgui函数解析

    在笔记二中我们已经知道了,在highgui文件夹下的正是opencv图形用户接口功能结构,我们这篇博客所说的便是D:\Program Files\opencv340\opencv\build\incl ...

  6. OpenCV学习笔记(十) 直方图操作

    直方图计算 直方图可以统计的不仅仅是颜色灰度, 它可以统计任何图像特征 (如 梯度, 方向等等).直方图的一些具体细节: dims: 需要统计的特征的数目, 在上例中, dims = 1 因为我们仅仅 ...

  7. OpenCV学习笔记二十:opencv_ts模块

    一,简介: OpenCV测试库,用于单元测试.

  8. OpenCV学习笔记四:ImgProc模块

    一,简介 这个模块包含一系列的常用图像处理算法. 二,分析 此模块包含的文件如下图: 其导出算法包括如下: /*********************** Background statistics ...

  9. opencv学习笔记(四)--图像平滑处理

    图像平滑处理的几种常用方法: 均值滤波 归一化滤波 高斯模糊 中值滤波 平滑处理(模糊)的主要目的是去燥声: 不同的处理方式适合不同的噪声图像,其中高斯模糊最常用. 其实最重要的是对图像卷积的核的理解 ...

随机推荐

  1. 我对于react-router路由原理的学习

    目录 react-router依赖基础--history react-router是如何实现URL与UI同步 一 react-router依赖基础--history history是一个独立的第三方j ...

  2. 【BZOJ 3238】 3238: [Ahoi2013]差异(SAM)

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 3047  Solved: 1375 Description In ...

  3. 【UOJ 34】 多项式乘法 (FFT)

    [题意] 给你两个多项式,请输出乘起来后的多项式. 先打一个递归版本的模板... #include<cstdio> #include<iostream> #include< ...

  4. herbinate 数据库乱码

    改jdbc或者hibernate编码:   jdbc:mysql://127.0.0.1:3306/db?useUnicode=true&characterEncoding=utf-8    ...

  5. BZOJ1007 水平相交直线

    按照斜率排序,我们可以想象如果你能看到大于等于三条直线那么他一定会组成一个下凸包,这样我们只需要判断如果当前这条直线与栈顶第二直线相交点相比于栈顶第二直线与栈顶直线相交点靠左那么他就不满足凸包性质. ...

  6. HDU 6071 Lazy Running(最短路)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6071 [题目大意] 给出四个点1,2,3,4,1和2,2和3,3和4,4和1 之间有路相连, 现在 ...

  7. 【洛谷】P1052 过河【DP+路径压缩】

    P1052 过河 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙 ...

  8. 【洛谷】P1156 垃圾陷阱【DP】

    P1156 垃圾陷阱 题目描述 卡门――农夫约翰极其珍视的一条Holsteins奶牛――已经落了到“垃圾井”中.“垃圾井”是农夫们扔垃圾的地方,它的深度为D(2≤D≤100)英尺. 卡门想把垃圾堆起来 ...

  9. 在centos6.0上通过nginx远程执行shell

    nginx本身不支持直接调用shell脚本,我们可以通过安装fastcgi程序,让nginx把调用shell的http请求交给fastcgi程序去处理,然后nginx 再将结果返回给用户方式间接调用s ...

  10. python开发_搜索本地文件信息写入文件

    功能:#在指定的盘符,如D盘,搜索出与用户给定后缀名(如:jpg,png)相关的文件 #然后把搜索出来的信息(相关文件的绝对路径),存放到用户指定的 #文件(如果文件不存在,则建立相应的文件)中 之前 ...