pytorch rnn 2
import torch
import torch.nn as nn
import numpy as np
import torch.optim as optim
class RNN(nn.Module):
def __init__(self,input_dim , hidden_dim , out_dim):
super(RNN,self).__init__()
self.linear_1 = nn.Linear(input_dim , hidden_dim)
self.linear_2 = nn.Linear(hidden_dim , hidden_dim)
self.linear_3 = nn.Linear(hidden_dim, out_dim)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
self.hidden_size = hidden_dim
def forward(self, input , hidden_input):
input = input.view(1, 1, -1)
hy = self.relu(self.linear_1(input) + self.linear_2(hidden_input))
output = self.sigmoid(self.linear_3(hy))
return output , hy
def init_weight(self):
nn.init.normal_(self.linear_1.weight.data , 0 , np.sqrt(2 / 16))
nn.init.uniform_(self.linear_1.bias, 0, 0)
nn.init.normal_(self.linear_2.weight.data, 0, np.sqrt(2 / 16))
nn.init.uniform_(self.linear_2.bias, 0, 0)
nn.init.normal_(self.linear_3.weight.data , 0 , np.sqrt(2 / 16))
nn.init.uniform_(self.linear_3.bias, 0, 0)
def init_hidden(self):
return torch.zeros([1,1,self.hidden_size])
def train(input_seq , target, encoder , optim , criterion ,max_length):
optim.zero_grad()
hidden = encoder.init_hidden()
encoder_outputs = torch.zeros(max_length)
for ndx in range(max_length):
x_in = torch.Tensor([input_seq[0][ndx] , input_seq[1][ndx]])
output , hidden = encoder(x_in , hidden)
encoder_outputs[ndx] = output[0,0]
target = torch.Tensor(target)
loss = criterion(encoder_outputs, target)
loss.backward()
optim.step()
return loss , encoder_outputs
def trainIter(batch_x , batch_y , encoder , max_length,learning_rate):
encoder_optimizer = optim.Adam(encoder.parameters(), lr=learning_rate)
criterion = nn.MSELoss()
loss = 0
predict = np.zeros([batch_size , max_length])
for ndx in range(len(batch_x)):
loss_ , encoder_outputs = train(batch_x[ndx],batch_y[ndx], encoder ,encoder_optimizer,criterion, max_length)
loss += loss_
predict[ndx] = encoder_outputs.detach().numpy()
return loss , predict
def getBinDict(bit_size = 16):
max = pow(2,bit_size)
bin_dict = {}
for i in range(max):
s = '{:016b}'.format(i)
arr = np.array(list(reversed(s)))
arr = arr.astype(int)
bin_dict[i] = arr
return bin_dict
binary_dim = 16
int2binary = getBinDict(binary_dim)
def getBatch( batch_size , binary_size):
x = np.random.randint(0,256,[batch_size , 2])
batch_x = np.zeros([batch_size , 2,binary_size] )
batch_y = np.zeros([batch_size , binary_size])
for i in range(0 , batch_size):
batch_x[i][0] = int2binary[x[i][0]]
batch_x[i][1] = int2binary[x[i][1]]
batch_y[i] = int2binary[x[i][0] + x[i][1]]
return batch_x , batch_y , [a + b for a,b in x]
def getInt(y , bit_size):
arr = np.zeros([len(y)])
for i in range(len(y)):
for j in range(bit_size):
arr[i] += (int(y[i][j]) * pow(2 , j))
return arr
if __name__ == '__main__':
input_size = 2
hidden_size = 8
batch_size = 100
net = RNN(input_size, hidden_size , 1)
net.init_weight()
print(net)
for i in range(100000):
net.zero_grad()
h0 = torch.zeros(1, batch_size, hidden_size)
x , y , t = getBatch(batch_size , binary_dim)
loss , outputs = trainIter(x , y , net , binary_dim , 0.01)
print('iterater:%d loss:%f' % (i, loss))
if i % 100== 0:
output2 = np.round(outputs)
result = getInt(output2,binary_dim)
print(t ,'\n', result)
print('iterater:%d loss:%f'%(i , loss))
pytorch rnn 2的更多相关文章
- pytorch rnn
温习一下,写着玩. import torch import torch.nn as nn import numpy as np import torch.optim as optim class RN ...
- [PyTorch] rnn,lstm,gru中输入输出维度
本文中的RNN泛指LSTM,GRU等等 CNN中和RNN中batchSize的默认位置是不同的. CNN中:batchsize的位置是position 0. RNN中:batchsize的位置是pos ...
- pytorch --Rnn语言模型(LSTM,BiLSTM) -- 《Recurrent neural network based language model》
论文通过实现RNN来完成了文本分类. 论文地址:88888888 模型结构图: 原理自行参考论文,code and comment: # -*- coding: utf-8 -*- # @time : ...
- pytorch RNN层api的几个参数说明
classtorch.nn.RNN(*args, **kwargs) input_size – The number of expected features in the input x hidde ...
- 机器翻译注意力机制及其PyTorch实现
前面阐述注意力理论知识,后面简单描述PyTorch利用注意力实现机器翻译 Effective Approaches to Attention-based Neural Machine Translat ...
- PyTorch专栏(六): 混合前端的seq2seq模型部署
欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/ 欢迎关注PyTorch官方中文教程站: http://pytorch.panchuang.net/ 专栏目录: 第一 ...
- 混合前端seq2seq模型部署
混合前端seq2seq模型部署 本文介绍,如何将seq2seq模型转换为PyTorch可用的前端混合Torch脚本.要转换的模型来自于聊天机器人教程Chatbot tutorial. 1.混合前端 在 ...
- “你什么意思”之基于RNN的语义槽填充(Pytorch实现)
1. 概况 1.1 任务 口语理解(Spoken Language Understanding, SLU)作为语音识别与自然语言处理之间的一个新兴领域,其目的是为了让计算机从用户的讲话中理解他们的意图 ...
- Pytorch系列教程-使用字符级RNN生成姓名
前言 本系列教程为pytorch官网文档翻译.本文对应官网地址:https://pytorch.org/tutorials/intermediate/char_rnn_generation_tutor ...
随机推荐
- before伪类的超有用应用技巧——水平菜单竖线分隔符
方法一.li前面加before伪类 <!doctype html> <html dir="ltr" lang="zh-CN"> < ...
- 在dropDownList中实现既能输入一个新值又能实现下拉选的代码
aspx: <div id="selDiv" style=" z-index:100; visibility:visible; clip:rect(0px 110p ...
- ASP.NET MVC - The view must derive from WebViewPage, or WebViewPage<TModel>
当通过一个空的站点构建ASP.NET MVC时经常会出现各种配置缺少的问题,最简单但的办法是吧VS自动生成的web.config文件拷贝到对应的目录下面 The view must derive fr ...
- 在ASP.NET MVC 3 中自定义AuthorizeAttribute时需要注意的页面缓存问题
一.ASP.NET MVC中使用OutputCache实现服务器端页面级缓存 在ASP.NET MVC中,假如我们想要将某个页面(即某个Action)缓存在服务器端,可以在Action上标上以下特性: ...
- c#后台读写Cookie
public class BaseCookies { #region Cookies public static void SetCookieValue(string key, string valu ...
- 安装wampserver时提示丢失MSVCR110.dll
安装Wampserver 2后启动的时候提示系统错误:MSVCR110.dll丢失. 在wampserver官网上有例如以下提示: 于是卸载原来的WAMPSERVER 2 ,在http://www.m ...
- ios开发之 -- UIView总结
如果想调用某个类的某个方法可以写成这样,这个方法来自NSObject类 performSelector: performSelector:withObject: performSelector:wit ...
- RxJava的实现原理
本周新的一天开始了,让我们一起造一个RxJava,揭秘RxJava的实现原理, 强烈推荐这个
- Mybatis框架中Mapper文件传值参数获取。【Mybatis】
1.参数个数为1个(string或者int) dao层方法为以下两种: /** * 单个int型 */ public List<UserComment> findByDepartmentI ...
- webpack配置(一)
这里再配置的时候走了些弯路,现在,把配置前的准备工作做好很重要: 首先,安装node.js,当然,npm也就有了: 其次,安装xampp,主要是为了配置Apache: 安装好后,xampp---htd ...