题目链接

\[\Huge{E_i=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^{n}\frac{q_j}{(i-j)^2}}
\]

设\(A[i]=q[i]\),\(B[i]=\frac{1}{i^2}\),\(A\times B\)就能得到第一个\(\sum\),把\(A\)反过来再\(\times B\)就能得到第二个\(\sum\),相减即可。

用\(FFT\)算。

#include <cstdio>
#include <cmath>
#include <algorithm>
#define re register
using namespace std;
const int MAXN = 300010;
const double PI = M_PI;
struct complex{
double x, y;
complex(double xx = 0, double yy = 0){ x = xx; y = yy; }
}a[MAXN], b[MAXN];
inline complex operator + (complex a, complex b){
return complex(a.x + b.x, a.y + b.y);
}
inline complex operator - (complex a, complex b){
return complex(a.x - b.x, a.y - b.y);
}
inline complex operator * (complex a, complex b){
return complex(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);
}
double q[MAXN], e[MAXN];
int r[MAXN], n, m;
void FFT(complex *f, int mode){
for(re int i = 0; i < m; ++i) if(i < r[i]) swap(f[i], f[r[i]]);
for(re int p = 2; p <= m; p <<= 1){
re int len = p >> 1;
re complex tmp(cos(PI / len), mode * sin(PI / len));
for(re int l = 0; l < m; l += p){
re complex w(1, 0);
for(re int k = l; k < l + len; ++k){
re complex t = w * f[len + k];
f[len + k] = f[k] - t;
f[k] = f[k] + t;
w = w * tmp;
}
}
}
}
int main(){
scanf("%d", &n);
for(re int i = 1; i <= n; ++i) scanf("%lf", &q[i]);
for(re int i = 1; i <= n; ++i) a[i].x = q[i], b[i].x = 1.0 / (1.0 * i * i);
for(m = 1; m <= (n << 1); m <<= 1);
for(re int i = 1; i < m; ++i) r[i] = r[i >> 1] >> 1 | ((i & 1) * (m >> 1));
FFT(a, 1); FFT(b, 1);
for(re int i = 0; i < m; ++i) a[i] = a[i] * b[i];
FFT(a, -1);
for(re int i = 1; i <= n; ++i) e[i] = a[i].x;
for(re int i = 0; i < m; ++i) a[i].x = b[i].x = a[i].y = b[i].y = 0;
for(re int i = 1; i <= n; ++i) a[i].x = q[n - i + 1], b[i].x = 1.0 / (1.0 * i * i);
FFT(a, 1); FFT(b, 1);
for(re int i = 0; i < m; ++i) a[i] = a[i] * b[i];
FFT(a, -1);
for(int i = 1; i <= n; ++i) printf("%.3lf\n", (e[i] - a[n - i + 1].x) / m);
return 0;
}

【洛谷 P3338】 [ZJOI2014]力(FFT)的更多相关文章

  1. [洛谷P3338] [ZJOI2014]力

    洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...

  2. 洛谷 P3338 [ZJOI2014]力 解题报告

    P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...

  3. 洛谷P3338 [ZJOI2014]力(FFT)

    传送门 题目要求$$E_i=\frac{F_i}{q_i}=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^n\frac{q_j}{(j-i)^2}$ ...

  4. 洛谷 P3338 [ZJOI2014]力

    题意简述 读入\(n\)个数\(q_i\) 设\(F_j = \sum\limits_{i<j}\frac{q_i\times q_j}{(i-j)^2 }-\sum\limits_{i> ...

  5. [bzoj3527] [洛谷P3338] [Zjoi2014]力

    Description 给出n个数qi,给出Fj的定义如下: \[ F_j=\sum\limits_{i<j} \frac{q_iq_j}{(i-j)^2} - \sum\limits_{i&g ...

  6. P3338 [ZJOI2014]力(FFT)

    题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...

  7. P3338 [ZJOI2014]力 /// FFT 公式转化翻转

    题目大意: https://www.luogu.org/problemnew/show/P3338 题解 #include <bits/stdc++.h> #define N 300005 ...

  8. 洛咕 P3338 [ZJOI2014]力

    好久没写过博客了.. 大力推式子就行了: \(E_i=\sum_{j<i}\frac{q_j}{(i-j)^2}+\sum_{j>i}\frac{q_j}{(j-i)^2}\) 那么要转化 ...

  9. [Luogu]P3338 [ZJOI2014]力(FFT)

    题目描述 给出\(n\)个数\(q_i\),给出\(F_j\)的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\fr ...

  10. 【洛谷P3338】力

    题目大意:求 \[ E_{j}=\sum_{i<j} \frac{q_{i}}{(i-j)^{2}}-\sum_{i>j} \frac{q_{i}}{(i-j)^{2}} \] 题解:可以 ...

随机推荐

  1. mac python install zlib not available

    用brew install 3.4.4(python)时报 zipimport.ZipImportError: can't decompress data; zlib not available 的错 ...

  2. 【Leetcode】 328. Odd Even Linked List

    Given a singly linked list, group all odd nodes together followed by the even nodes. Please note her ...

  3. 【Linux】- 简明Vim练习攻略

    vim的学习曲线相当的大(参看各种文本编辑器的学习曲线),所以,如果你一开始看到的是一大堆VIM的命令分类,你一定会对这个编辑器失去兴趣的.下面的文章翻译自<Learn Vim Progress ...

  4. i18n实现前端国际化(实例)

    在今日的需求中需要利用 i18n 这个框架来实现前端的国家化操作,下图是实现效果: 点击选择框实现网页上语言的切换: 下面开始实现过程: 所需工具:    - jquery-3.3.1.js 下载地址 ...

  5. perf的采样模式和统计模式

    perf的采样模式和统计模式 统计模式和采样模式使用寄存器的方法不相同; 在统计模式下,每次调度之前设置寄存器,调度之后清理寄存器,留个下个进程使用;PMU寄存器的使用方法; 在采样模式下,每次 pm ...

  6. 什么是HotSpot

    Java 是动态编译,跟C++静态编译不同,这就是JIT编译器的原因(Just In Time) HotSpot会把这些部门动态地编译成机器码,Native code, 并对机器码进行优化, 静态编译 ...

  7. vue & $data & data

    vue & $data & data vm.a === vm.$data.a https://vuejs.org/v2/api/#data https://flaviocopes.co ...

  8. postman 上一个接口返回值传给下一个接口

    问题:如何将A请求responseBody中的token传入B请求中的request中 把A请求中的token设置为环境变量,如下: tests["Status code is 200&qu ...

  9. Check Corners HDU - 2888(二维RMQ)

    就是板题.. 查询子矩阵中最大的元素...然后看看是不是四个角落的  是就是yes  不是就是no  判断一下就好了 #include <iostream> #include <cs ...

  10. mysql安装使用详细教程

    1.数据库存储数据的方式与Excel类似. 一.数据库介绍 1.什么是数据库? 数据库(Database)是按照数据结构来组织.存储和管理数据的仓库, 每个数据库都有一个或多个不同的API用于创建,访 ...