【BZOJ】2553: [BeiJing2011]禁忌 AC自动机+期望+矩阵快速幂
【题意】给定n个禁忌字符串和字符集大小alphabet,保证所有字符在集合内。一个字符串的禁忌伤害定义为分割能匹配到最多的禁忌字符串数量(一个可以匹配多次),求由字符集构成的长度为Len的字符串的期望禁忌伤害。n<=5,1<=alphabet<=26,len<=10^9。
【算法】AC自动机+期望+矩阵快速幂
【题解】参考:BZOJ2553: [BeiJing2011]禁忌
首先对于一个确定的字符串,每个匹配的禁忌字符串视为一条线段,就是经典的不重叠最大线段数问题。
通用的贪心做法:按右端点排序,然后贪心能选就选。
对禁忌字符串建AC自动机,匹配到关键节点ans++并返回根重新匹配,这正好对应贪心过程(关键节点即字符串结尾,需要传递到所有以它为fail的节点)。
设f[i][j]表示串长 i 匹配到节点 j 的期望,根据全期望公式:(期望只能倒推……)
$$f[i][j]=\sum_{k=1}^{\alpha}\frac{1}{\alpha}*(f[i+1][ch(j,k)]+[ch(j,k)==0])$$
其中,ch(a,b)表示AC自动机中节点a+字符b转移到达的节点。
最后用矩阵快速幂优化转移(加一个常数项)。
听说炸精度,就不写代码了哈哈哈QwQ。
【BZOJ】2553: [BeiJing2011]禁忌 AC自动机+期望+矩阵快速幂的更多相关文章
- bzoj 2553: [BeiJing2011]禁忌 AC自动机+矩阵乘法
题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=2553 题解: 利用AC自动机的dp求出所有的转移 然后将所有的转移储存到矩阵中,进行矩阵 ...
- bzoj 2553 [BeiJing2011]禁忌——AC自动机+概率DP+矩阵
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2553 看了题解才会…… 首先,给定一个串,最好的划分方式是按禁忌串出现的右端点排序,遇到能填 ...
- 【BZOJ】4861: [Beijing2017]魔法咒语 AC自动机+DP+矩阵快速幂
[题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法 ...
- Luogu-3250 [BJOI2017]魔法咒语(AC自动机,矩阵快速幂)
Luogu-3250 [BJOI2017]魔法咒语(AC自动机,矩阵快速幂) 题目链接 题解: 多串匹配问题,很容易想到是AC自动机 先构建忌讳词语的AC自动机,构建时顺便记录一下这个点以及它的所有后 ...
- BZOJ2553 Beijing2011禁忌(AC自动机+动态规划+矩阵快速幂+概率期望)
考虑对一个串如何分割能取得最大值.那么这是一个经典的线段覆盖问题,显然每次取右端点尽量靠前的串.于是可以把串放在AC自动机上跑,找到一个合法串后就记录并跳到根. 然后考虑dp.设f[i][j]表示前i ...
- BZOJ.4180.字符串计数(后缀自动机 二分 矩阵快速幂/倍增Floyd)
题目链接 先考虑 假设S确定,使构造S操作次数最小的方案应是:对T建SAM,S在SAM上匹配,如果有S的转移就转移,否则操作数++,回到根节点继续匹配S.即每次操作一定是一次极大匹配. 简单证明:假设 ...
- 【BZOJ2553】[BeiJing2011]禁忌 AC自动机+期望DP+矩阵乘法
[BZOJ2553][BeiJing2011]禁忌 Description Magic Land上的人们总是提起那个传说:他们的祖先John在那个东方岛屿帮助Koishi与其姐姐Satori最终战平. ...
- [poj2778 DNA Sequence]AC自动机,矩阵快速幂
题意:给一些字符串的集合S和整数n,求满足 长度为n 只含charset = {'A'.'T‘.'G'.'C'}包含的字符 不包含S中任一字符串 的字符串的种类数. 思路:首先对S建立ac自动机,考虑 ...
- 【BZOJ 2553】[BeiJing2011]禁忌 AC自动机+期望概率dp
我一开始想的是倒着来,发现太屎,后来想到了一种神奇的方法——我们带着一个既有期望又有概率的矩阵,偶数(2*id)代表期望,奇数(2*id+1)代表概率,初始答案矩阵一列,1的位置为1(起点为0),工具 ...
随机推荐
- php中ob缓存机制
1.ob缓存运行方式 2.注意:在程序中如果开启ob_start(),所有的echo输出都会保存到ob缓存中,可以使用ob系列函数进行操作,如果没有,默认情况下,在程序执行结束,会把缓存中的数据发送给 ...
- MySQL---InnoDB引擎隔离级别详解
原帖:http://www.cnblogs.com/snsdzjlz320/p/5761387.html SQL标准定义了4种隔离级别,包括了一些具体规则,用来限定事务内外的哪些改变是可见的,哪些是不 ...
- Vue 自定义指令练习
Vue.directive(id,definition)注册一个全局自定义指令,接收两个参数,指令ID以及定义对象 取值: <div v-demo="{ color: 'white', ...
- 【Python】第一篇:python基础_1
本篇内容 Python介绍 安装 第一个程序(hello,world) 变量 用户输入(input) 数据类型 数据运算 if判断 break和continue的区别 while 循环 一. Pyth ...
- web项目访问路径上为什么不能写上WebContent
我们常常在WEB项目中要写很多的访问路径,比如说/good/target.jsp;目录结构中从来不会带有项目目录结构的WebContent?这到底的为什么呢? 我们知道WEB项目是放在容器上运行的,而 ...
- wp开发(三)--赚取收益篇
App开发完毕了,是否有赚取收益的想法呢?下面很浅显地介绍两种常用赚取收益的方法. 一. 收费 在发布应用时,可以对应用进行定价,发布到商城之后,用户付费才可以下载,当然也可以提供试用版.收益状况可以 ...
- 【比赛】HNOI2018 毒瘤
虚树+dp 直接看zlttttt的强大题解 zlttttt的题解看这里 #include<bits/stdc++.h> #define ui unsigned int #define ll ...
- [CQOI2013]新Nim游戏 线性基
题面 题面 题解 首先我们知道nim游戏先手必败当且仅当所有石堆异或和为0,因此我们的目标就是要使对手拿石堆的时候,无论如何都不能使剩下的石堆异或和为0. 对于一个局面,如果我们可以选取一些可以凑出0 ...
- [TJOI2015]线性代数 网络流
题面 题面 题解 先化一波式子: \[D = (A \cdot B - C)A^T \] \[ = \sum_{i = 1}^{n}H_{1i}\cdot A^T_{i1}\] \[H_{1i} = ...
- CODECHEF Chef and Churus 解题报告
[CODECHEF]Chef and Churus Description 有一个长度为\(n\)的数组\(A\),有\(n\)个函数,第\(i\)个函数的值为\(\sum_{j=l_i}^{r_i} ...