【BZOJ】2553: [BeiJing2011]禁忌 AC自动机+期望+矩阵快速幂
【题意】给定n个禁忌字符串和字符集大小alphabet,保证所有字符在集合内。一个字符串的禁忌伤害定义为分割能匹配到最多的禁忌字符串数量(一个可以匹配多次),求由字符集构成的长度为Len的字符串的期望禁忌伤害。n<=5,1<=alphabet<=26,len<=10^9。
【算法】AC自动机+期望+矩阵快速幂
【题解】参考:BZOJ2553: [BeiJing2011]禁忌
首先对于一个确定的字符串,每个匹配的禁忌字符串视为一条线段,就是经典的不重叠最大线段数问题。
通用的贪心做法:按右端点排序,然后贪心能选就选。
对禁忌字符串建AC自动机,匹配到关键节点ans++并返回根重新匹配,这正好对应贪心过程(关键节点即字符串结尾,需要传递到所有以它为fail的节点)。
设f[i][j]表示串长 i 匹配到节点 j 的期望,根据全期望公式:(期望只能倒推……)
$$f[i][j]=\sum_{k=1}^{\alpha}\frac{1}{\alpha}*(f[i+1][ch(j,k)]+[ch(j,k)==0])$$
其中,ch(a,b)表示AC自动机中节点a+字符b转移到达的节点。
最后用矩阵快速幂优化转移(加一个常数项)。
听说炸精度,就不写代码了哈哈哈QwQ。
【BZOJ】2553: [BeiJing2011]禁忌 AC自动机+期望+矩阵快速幂的更多相关文章
- bzoj 2553: [BeiJing2011]禁忌 AC自动机+矩阵乘法
题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=2553 题解: 利用AC自动机的dp求出所有的转移 然后将所有的转移储存到矩阵中,进行矩阵 ...
- bzoj 2553 [BeiJing2011]禁忌——AC自动机+概率DP+矩阵
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2553 看了题解才会…… 首先,给定一个串,最好的划分方式是按禁忌串出现的右端点排序,遇到能填 ...
- 【BZOJ】4861: [Beijing2017]魔法咒语 AC自动机+DP+矩阵快速幂
[题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法 ...
- Luogu-3250 [BJOI2017]魔法咒语(AC自动机,矩阵快速幂)
Luogu-3250 [BJOI2017]魔法咒语(AC自动机,矩阵快速幂) 题目链接 题解: 多串匹配问题,很容易想到是AC自动机 先构建忌讳词语的AC自动机,构建时顺便记录一下这个点以及它的所有后 ...
- BZOJ2553 Beijing2011禁忌(AC自动机+动态规划+矩阵快速幂+概率期望)
考虑对一个串如何分割能取得最大值.那么这是一个经典的线段覆盖问题,显然每次取右端点尽量靠前的串.于是可以把串放在AC自动机上跑,找到一个合法串后就记录并跳到根. 然后考虑dp.设f[i][j]表示前i ...
- BZOJ.4180.字符串计数(后缀自动机 二分 矩阵快速幂/倍增Floyd)
题目链接 先考虑 假设S确定,使构造S操作次数最小的方案应是:对T建SAM,S在SAM上匹配,如果有S的转移就转移,否则操作数++,回到根节点继续匹配S.即每次操作一定是一次极大匹配. 简单证明:假设 ...
- 【BZOJ2553】[BeiJing2011]禁忌 AC自动机+期望DP+矩阵乘法
[BZOJ2553][BeiJing2011]禁忌 Description Magic Land上的人们总是提起那个传说:他们的祖先John在那个东方岛屿帮助Koishi与其姐姐Satori最终战平. ...
- [poj2778 DNA Sequence]AC自动机,矩阵快速幂
题意:给一些字符串的集合S和整数n,求满足 长度为n 只含charset = {'A'.'T‘.'G'.'C'}包含的字符 不包含S中任一字符串 的字符串的种类数. 思路:首先对S建立ac自动机,考虑 ...
- 【BZOJ 2553】[BeiJing2011]禁忌 AC自动机+期望概率dp
我一开始想的是倒着来,发现太屎,后来想到了一种神奇的方法——我们带着一个既有期望又有概率的矩阵,偶数(2*id)代表期望,奇数(2*id+1)代表概率,初始答案矩阵一列,1的位置为1(起点为0),工具 ...
随机推荐
- css选择器和新增UI样式总结
经过两天的学习,初步对css3选择器和新增UI样式有了进一步的理解.
- PAT 甲级 1054 The Dominant Color
https://pintia.cn/problem-sets/994805342720868352/problems/994805422639136768 Behind the scenes in t ...
- 转载:java程序调用内存的变化过程
前文知道了java程序运行时在内存中的大概分布,但是对于具体程序是如何运行的,看到一篇文章,直接转载过来. (一)不含静态变量的java程序运行时内存变化过程分析 代码: package oop; / ...
- PHP中类型约束
类型约束 什么叫类型约束? 就是要求某个变量只能使用(接收,存储)某种指定的数据类型: php属于“弱类型语言”,通常不支持类型约束: 相应的,强类型语言,类型约束却是其“基本特征”. php中,只支 ...
- smokping的部署使用
本文是介绍如何的使用smokeping来监控idc机房的网络质量情况,从监控图上的延时与丢包能分辨出你机房的网络是否稳定,是否为多线,是否为BGP机房,到各城市的3个运行商网络各是什么情况,如果出现问 ...
- 【刷题】BZOJ 2142 礼物
Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店 ...
- BZOJ4033:[HAOI2015]树上染色——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4033 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将 ...
- 使图片水平并垂直居中的一个Hack
淘宝的一个前端面试题:使用纯CSS实现未知尺寸的图片(但高宽都小于200px)在200px的正方形容器中水平和垂直居中. 想起了vertical-align:middle;但是不行,后来才知道还要di ...
- 《剑指offer》— JavaScript(3)从尾到头打印链表
从尾到头打印链表 题目描述 输入一个链表,从尾到头打印链表每个节点的值. 实现代码 /*function ListNode(x){ this.val = x; this.next = null; }* ...
- Canny边缘检测原理及C#程序实现
http://blog.csdn.net/yjz_uestc/article/details/6664937 Canny边缘检测是被公认的检测效果最好的边缘检测方法,是由John F. Canny于1 ...