DBSCAN聚类︱scikit-learn中一种基于密度的聚类方式
一、DBSCAN聚类概述
基于密度的方法的特点是不依赖于距离,而是依赖于密度,从而克服基于距离的算法只能发现“球形”聚簇的缺点。
DBSCAN的核心思想是从某个核心点出发,不断向密度可达的区域扩张,从而得到一个包含核心点和边界点的最大化区域,区域中任意两点密度相连。
1、伪代码
算法: DBSCAN
输入: E — 半径
MinPts — 给定点在 E 领域内成为核心对象的最小领域点数
D — 集合
输出:目标类簇集合
方法: repeat
1) 判断输入点是否为核心对象
2) 找出核心对象的 E 领域中的所有直接密度可达点
util 所有输入点都判断完毕
repeat
针对所有核心对象的 E 领域所有直接密度可达点找到最大密度相连对象集合,
中间涉及到一些密度可达对象的合并。
Util 所有核心对象的 E 领域都遍历完毕
密度:空间中任意一点的密度是以该点为圆心,以EPS为半径的圆区域内包含的点数目
边界点:空间中某一点的密度,如果小于某一点给定的阈值minpts,则称为边界点
噪声点:不属于核心点,也不属于边界点的点,也就是密度为1的点
2、优点:
- 这类算法能克服基于距离的算法只能发现“类圆形”(凸)的聚类的缺点
- 可发现任意形状的聚类,且对噪声数据不敏感。
- 不需要指定类的数目cluster
- 算法中只有两个参数,扫描半径 (eps)和最小包含点数(min_samples)
3、缺点:
- 1、计算复杂度,不进行任何优化时,算法的时间复杂度是O(N^{2}),通常可利用R-tree,k-d tree, ball
tree索引来加速计算,将算法的时间复杂度降为O(Nlog(N))。 - 2、受eps影响较大。在类中的数据分布密度不均匀时,eps较小时,密度小的cluster会被划分成多个性质相似的cluster;eps较大时,会使得距离较近且密度较大的cluster被合并成一个cluster。在高维数据时,因为维数灾难问题,eps的选取比较困难。
- 3、依赖距离公式的选取,由于维度灾害,距离的度量标准不重要
- 4、不适合数据集集中密度差异很大的,因为eps和metric选取很困难
4、与其他聚类算法比较
来看两张图:
DBSCAN可以较快、较有效的聚类出来
eps的取值对聚类效果的影响很大。
.
二、sklearn中的DBSCAN聚类算法
1、主要函数介绍:
DBSCAN(eps=0.5, min_samples=5, metric='euclidean', algorithm='auto', leaf_size=30, p=None, n_jobs=1)
最重要的两个参数:
eps:两个样本之间的最大距离,即扫描半径
min_samples :作为核心点的话邻域(即以其为圆心,eps为半径的圆,含圆上的点)中的最小样本数(包括点本身)。
其他参数:
metric :度量方式,默认为欧式距离,还有metric=’precomputed’(稀疏半径邻域图)
algorithm:近邻算法求解方式,有四种:‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’
leaf_size:叶的大小,在使用BallTree or cKDTree近邻算法时候会需要这个参数
n_jobs :使用CPU格式,-1代表全开
其他主要属性:
core_sample_indices_:核心样本指数。(此参数在代码中有详细的解释)
labels_:数据集中每个点的集合标签给,噪声点标签为-1。
components_ :核心样本的副本
运行式子:
model = sklearn.cluster.DBSCAN(eps_领域大小圆半径,min_samples_领域内,点的个数的阈值)
model.fit(data) 训练模型
model.fit_predict(data) 模型的预测方法
.
2、DBSCAN自编代码
import numpy
import pandas
import matplotlib.pyplot as plt
#导入数据
data = pandas.read_csv("F:\\python 数据挖掘分析实战\\Data\\data (7).csv")
plt.scatter(
data['x'],
data['y']
)
eps = 0.2;
MinPts = 5;
from sklearn.metrics.pairwise import euclidean_distances
ptses = []
dist = euclidean_distances(data)
for row in dist:
#密度,空间中任意一点的密度是以该点为圆心、以 Eps 为半径的圆区域内包含的点数
density = numpy.sum(row<eps)
pts = 0;
if density>MinPts:
#核心点(Core Points)
#空间中某一点的密度,如果大于某一给定阈值MinPts,则称该为核心点
pts = 1
elif density>1 :
#边界点(Border Points)
#空间中某一点的密度,如果小于某一给定阈值MinPts,则称该为边界点
pts = 2
else:
#噪声点(Noise Points)
#数据集中不属于核心点,也不属于边界点的点,也就是密度值为1的点
pts = 0
ptses.append(pts)
#把噪声点过滤掉,因为噪声点无法聚类,它们独自一类
corePoints = data[pandas.Series(ptses)!=0]
coreDist = euclidean_distances(corePoints)
#首先,把每个点的领域都作为一类
#邻域(Neighborhood)
#空间中任意一点的邻域是以该点为圆心、以 Eps 为半径的圆区域内包含的点集合
cluster = dict();
i = 0;
for row in coreDist:
cluster[i] = numpy.where(row<eps)[0]
i = i + 1
#然后,将有交集的领域,都合并为新的领域
for i in range(len(cluster)):
for j in range(len(cluster)):
if len(set(cluster[j]) & set(cluster[i]))>0 and i!=j:
cluster[i] = list(set(cluster[i]) | set(cluster[j]))
cluster[j] = list();
#最后,找出独立(也就是没有交集)的领域,就是我们最后的聚类的结果了
result = dict();
j = 0
for i in range(len(cluster)):
if len(cluster[i])>0:
result[j] = cluster[i]
j = j + 1
#找出每个点所在领域的序号,作为他们最后聚类的结果标记
for i in range(len(result)):
for j in result[i]:
data.at[j, 'type'] = i
plt.scatter(
data['x'],
data['y'],
c=data['type']
)
3、实战案例:
# DBSCAN clustering algorithm
print(__doc__)
import numpy as np
from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs
from sklearn.preprocessing import StandardScaler
# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,
random_state=0)
X = StandardScaler().fit_transform(X)
# Compute DBSCAN
db = DBSCAN(eps=0.1, min_samples=10).fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_
# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
print('Estimated number of clusters: %d' % n_clusters_)
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f"
% metrics.adjusted_rand_score(labels_true, labels))
print("Adjusted Mutual Information: %0.3f"
% metrics.adjusted_mutual_info_score(labels_true, labels))
print("Silhouette Coefficient: %0.3f"
% metrics.silhouette_score(X, labels))
#
import matplotlib.pyplot as plt
# Black removed and is used for noise instead.
unique_labels = set(labels)
colors = [plt.cm.Spectral(each)
for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):
if k == -1:
# Black used for noise.
col = [0, 0, 0, 1]
class_member_mask = (labels == k)
xy = X[class_member_mask & core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=14)
xy = X[class_member_mask & ~core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=6)
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()
最后的结果:
.
延伸一:DPEAK算法——密度最大值算法
本节来源:机器学习笔记(九)聚类算法及实践(K-Means,DBSCAN,DPEAK,Spectral_Clustering)、聚类 - 4 - 层次聚类、密度聚类(DBSCAN算法、密度最大值聚类)
密度最大值聚类是一种简洁优美的聚类算法, 可以识别各种形状的类簇, 并且参数很容易确定。用于找聚类中心和异常值的。
用DPEAK算法找到聚类中心之后,在用DBSCAN会更好
(1)我们首先给定一个半径范围r,然后对我们所有的样本,计算它的r邻域内的样本数目记作它的局部密度记作rho
(2)第二步,计算每个样本到密度比它高的点的距离的最小值记作sigma,有了这两个参数就可以进行我们下一步的筛选工作了
具体分成以下四种情况:
1 rho很小,sigma很大。这个样本周围的样本量很小,但是到比它密度大的点的距离还挺远的,这说明啥,它是个远离正常样本的异常值啊,在偏僻的小角落里搞自己的小动作啊,果断踢了它呀。
2 rho很大,sigma也很大。这个样本周围样本量很大,并且要找到比它密度还大的点要好远好远,这说明这个点是被众星环绕的啊,它就是这个簇的王,我们往往把它确定为簇中心。
3 rho很小,sigma也很小。样本周围的样本量很小,但要找到样本密度比它大的点没多远就有,说明这个点是一个处在边缘上的点,往往是一个簇的边界。
4 rho很大,sigma很小。该样本周围的样本量很大,但是密度比它还大的居然也不远,这种情况只会发生在你处在了簇中心的旁边时,很可惜,也许你是这个簇的核心成员,但你做不了这个簇的王。
好的,基于每个样本的rho和sigma,我们大概就能确定它们各自的所扮演的角色了,我们把大反派异常值从样本中剔除,然后把我们找到的rho和sigma都很大的点作为簇中心,再利用K-Means或者DBSCAN算法进行聚类就能得到相对比较好的结果。
参考来源
聚类分析(五)基于密度的聚类算法 — DBSCAN
聚类算法第三篇-密度聚类算法DBSCAN
聚类算法初探(五)DBSCAN,作者: peghoty
聚类算法第一篇-概览
sklearn.cluster.DBSCAN
【挖掘模型】:Python-DBSCAN算法
DBSCAN聚类︱scikit-learn中一种基于密度的聚类方式的更多相关文章
- 【机器学习】DBSCAN Algorithms基于密度的聚类算法
一.算法思想: DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法.与划分和层 ...
- 简单易学的机器学习算法—基于密度的聚类算法DBSCAN
简单易学的机器学习算法-基于密度的聚类算法DBSCAN 一.基于密度的聚类算法的概述 我想了解下基于密度的聚类算法,熟悉下基于密度的聚类算法与基于距离的聚类算法,如K-Means算法之间的区别. ...
- 简单易学的机器学习算法——基于密度的聚类算法DBSCAN
一.基于密度的聚类算法的概述 最近在Science上的一篇基于密度的聚类算法<Clustering by fast search and find of density peaks> ...
- 基于密度的聚类之Dbscan算法
一.算法概述 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法.与划分和层次 ...
- 聚类:层次聚类、基于划分的聚类(k-means)、基于密度的聚类、基于模型的聚类
一.层次聚类 1.层次聚类的原理及分类 1)层次法(Hierarchicalmethods)先计算样本之间的距离.每次将距离最近的点合并到同一个类.然后,再计算类与类之间的距离,将距离最近的类合并为一 ...
- Android中三种超实用的滑屏方式汇总(转载)
Android中三种超实用的滑屏方式汇总 现如今主流的Android应用中,都少不了左右滑动滚屏这项功能,(貌似现在好多人使用智能机都习惯性的有事没事的左右滑屏,也不知道在干什么...嘿嘿),由于 ...
- JavaScript中四种不同的属性检测方式比较
JavaScript中四种不同的属性检测方式比较 1. 用in方法 var o = {x:1}; "x" in o; //true "y" in o; //fa ...
- spring mvc中几种获取request对象的方式
在使用spring进行web开发的时候,优势会用到request对象,用来获取访问ip.请求头信息等 这里收集几种获取request对象的方式 方法一:在controller里面的加参数 public ...
- Self Organizing Maps (SOM): 一种基于神经网络的聚类算法
自组织映射神经网络, 即Self Organizing Maps (SOM), 可以对数据进行无监督学习聚类.它的思想很简单,本质上是一种只有输入层--隐藏层的神经网络.隐藏层中的一个节点代表一个需要 ...
随机推荐
- [HAOI2017模拟]百步穿杨
今天的考试题. 考试的时候因为以前做过还写过题解,然后就以为模型已经很清楚了,然后就开始直接推.最后因为蜜汁自信一定能推出来,然后模型搞错了,只能交个暴力上去,于是这场考试GG. 第一次碰上这道题是在 ...
- shell进阶教程
背景:就自己常用的shell脚本写作风格,总结了一些知识点.也是作为交接工作的一部分文档.部分内容单独写 #!/bin/sh # shell脚本进阶教程 # 1.常用知识点:变量设置/日期设置/格式化 ...
- 20145303刘俊谦 《Java程序设计》第2周学习总结
20145303刘俊谦 <Java程序设计>第2周学习总结 教材学习内容总结 1.对于标识符的一些名称规范(觉得挺重要而且容易混淆!定义就不写了,列一些例子): 包名: xxxyyyzzz ...
- 2705: [SDOI2012]Longge的问题
Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1898 Solved: 1191[Submit][Status][Discuss] Descripti ...
- ubuntu18.04 64bit如何安装docker
注:参考自https://docs.docker.com/install/linux/docker-ce/ubuntu/ 1.卸载旧版本docker(如果之前安装了) sudo apt-get rem ...
- Hibernate抽取BaseDao
package com.cky.dao; import org.hibernate.Query; import org.hibernate.Session; import org.hibernate. ...
- CentOS7系统安装配置samba服务
# 查询是否已经安装了Samba rpm -qi samba # 安装 yum -y install samba samba-client samba-common # 添加新用户 useradd s ...
- LeetCode——Unique Binary Search Trees
Question Given n, how many structurally unique BST's (binary search trees) that store values 1...n? ...
- 商品详情页,banner滚动点击加载效果,js,jquary
<script language="javascript"> $(document).ready(function () { //purchase ...
- Python学习札记(八) Basic5 循环
参考:循环 Note: A.for···in循环: 1.for x in ...循环就是把每个元素代入变量x,然后执行缩进块的语句. eg. #!/usr/bin/env python3 list_A ...