题意:

long long data[250001];

void A( int st, int nd ) { for( int i = st; i \le nd; i++ ) data[i] = data[i] + (i - st + 1); }

void B( int st, int nd ) { for( int i = st; i \le nd; i++ ) data[i] = data[i] + (nd - i + 1); }

void C( int st, int nd, int x ) { for( int i = st; i \le nd; i++ ) data[i] = x; }

long long S( int st, int nd ) { long long res = 0; for( int i = st; i \le nd; i++ ) res += data[i]; return res; }

四个函数,对应四种操作A、B、C、S给出m个操作,求s操作时返回的结果。

分析:

明显的线段树的区间更新,但懒惰标记的选择要想一想,C这个操作好处理、我们观察A、B发现都是加上一个等差数列、等差数列加等差数列还是等差数列、那我们选择等差数列的首项和公差做标记。

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <queue>
#include <stack>
#include <cstdio>
#include <vector>
#include <string>
#include <cctype>
#include <complex>
#include <cassert>
#include <utility>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
typedef pair<int,int> PII;
typedef long long ll;
#define lson l,m,rt<<1
#define pi acos(-1.0)
#define rson m+1,r,rt<<1|1
#define All 1,N,1
#define read freopen("in.txt", "r", stdin)
#define N 250001
const ll INFll = 0x3f3f3f3f3f3f3f3fLL;
const int INF= 0x7ffffff;
const int mod = ;
struct node{
ll a1,d,sum,setv;
int l,r;
}t[N<<];
void pushup(int rt){
t[rt].sum=t[rt<<].sum+t[rt<<|].sum;
}
void pushdown(int rt){
if(t[rt].setv!=INF){
t[rt<<].setv=t[rt<<|].setv=t[rt].setv;
t[rt<<].a1=t[rt<<].d=t[rt<<|].a1=t[rt<<|].d=;
t[rt<<].sum=1LL*(t[rt<<].r-t[rt<<].l+)*t[rt].setv;
t[rt<<|].sum=1LL*(t[rt<<|].r-t[rt<<|].l+)*t[rt].setv;
t[rt].setv=INF;
}
if(t[rt].a1||t[rt].d){
ll len1=t[rt<<].r-t[rt<<].l+;
ll len2=t[rt<<|].r-t[rt<<|].l+;
ll tmp1=t[rt].a1;
ll tmp2=tmp1+len1*t[rt].d;
t[rt<<].a1+=tmp1;
t[rt<<|].a1+=tmp2;
t[rt<<].d+=t[rt].d;
t[rt<<|].d+=t[rt].d;
t[rt<<].sum+=tmp1*len1+len1*(len1-)/*t[rt].d;//等差数列求和
t[rt<<|].sum+=tmp2*len2+len2*(len2-)/*t[rt].d;
t[rt].a1=t[rt].d=;
}
}
void build(int l,int r,int rt){
t[rt].l=l;
t[rt].r=r;
t[rt].sum=t[rt].a1=t[rt].d=;
t[rt].setv=INF;
if(l==r)return;
int m=(l+r)>>;
build(lson);
build(rson);
pushup(rt);
}
void update_add(int l,int r,int rt,ll d){
if(l<=t[rt].l&&r>=t[rt].r){
ll a1=(d==)?(t[rt].l-l+):(r-t[rt].l+);//确定首项
ll len=t[rt].r-t[rt].l+;
t[rt].a1+=a1;
t[rt].d+=d;
t[rt].sum+=a1*len+len*(len-)/*d;
return;
}
pushdown(rt);
int m=(t[rt].l+t[rt].r)>>;
if(l<=m)update_add(l,r,rt<<,d);
if(r>m)update_add(l,r,rt<<|,d);
pushup(rt);
}
void update_set(int l,int r,int rt,ll x){
if(l<=t[rt].l&&r>=t[rt].r){
t[rt].setv=x;
t[rt].a1=t[rt].d=;
t[rt].sum=1LL*(t[rt].r-t[rt].l+)*x;
return;
}
pushdown(rt);
int m=(t[rt].l+t[rt].r)>>;
if(l<=m)update_set(l,r,rt<<,x);
if(r>m)update_set(l,r,rt<<|,x);
pushup(rt);
}
ll query(int l,int r,int rt){
if(l<=t[rt].l&&r>=t[rt].r){
return t[rt].sum;
}
pushdown(rt);
ll num=;
int m=(t[rt].l+t[rt].r)>>;
if(l<=m)num+=query(l,r,rt<<);
if(r>m)num+=query(l,r,rt<<|);
return num;
}
int main()
{
int n,tll,trr;
ll x;
char op[];
build(,N,);
scanf("%d",&n);
while(n--){
scanf("%s%d%d",op,&tll,&trr);
if(op[]=='A'){
update_add(tll,trr,,);
}
else if(op[]=='B')
update_add(tll,trr,,-);
else if(op[]=='C'){
scanf("%lld",&x);
update_set(tll,trr,,x);
}
else if(op[]=='S'){
printf("%lld\n",query(tll,trr,));
}
}
return ;
}

UVA 12436-Rip Van Winkle's Code(线段树的区间更新)的更多相关文章

  1. Uva 12436 Rip Van Winkle's Code

    Rip Van Winkle was fed up with everything except programming. One day he found a problem whichrequir ...

  2. UVA 12436 - Rip Van Winkle&#39;s Code(线段树)

    UVA 12436 - Rip Van Winkle's Code option=com_onlinejudge&Itemid=8&page=show_problem&cate ...

  3. Uva 12436 Rip Van Winkle&#39;s Code

    Rip Van Winkle was fed up with everything except programming. One day he found a problem whichrequir ...

  4. hdu 1556:Color the ball(线段树,区间更新,经典题)

    Color the ball Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  5. hdu 1698:Just a Hook(线段树,区间更新)

    Just a Hook Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  6. hdu1698线段树的区间更新区间查询

    Just a Hook Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  7. HDU 1556 Color the ball(线段树:区间更新)

    http://acm.hdu.edu.cn/showproblem.php?pid=1556 题意: N个气球,每次[a,b]之间的气球涂一次色,统计每个气球涂色的次数. 思路: 这道题目用树状数组和 ...

  8. zoj3686(线段树的区间更新)

    对线段树的区间更新有了初步的了解... A Simple Tree Problem Time Limit: 3 Seconds      Memory Limit: 65536 KB Given a ...

  9. Color the ball (线段树的区间更新问题)

    N个气球排成一排,从左到右依次编号为1,2,3....N.每次给定2个整数a b(a <= b),lele便为骑上他的“小飞鸽"牌电动车从气球a开始到气球b依次给每个气球涂一次颜色.但 ...

随机推荐

  1. C# Windows - TextBox 控件

    .NET Framework内置了两个基本控件来提取用户输入的文本: TextBox和RichTextBox.这两个控件都派生于基类TextBoxBase,而TextBoxBase派生于Control ...

  2. Java中怎样判断一个字符串是否是数字?

    1:正则表达式 public static void main(String[] args) { String str = "123456456456456456"; boolea ...

  3. C#学习笔记(二)

    1.注释:注销,解释2.单行://多行:/**/文档注释:///按enter主食要保证 别人一看就明白3.快速对期待吗:ctrl+k+d,按住ctrl不放,按k,迅速抬起,再按d(按D得时候k已经抬起 ...

  4. WPF性能优化经验总结

    WPF性能优化一.Rendering Tier 1. 根据硬件配置的不同,WPF采用不同的Rendering Tier做渲染.下列情况请特别注意,因为在这些情况下,即使是处于Rendering Tie ...

  5. 跨平台Unicode与UTF8互转代码

    参考来源:http://blog.csdn.net/flying8127/article/details/1598521 在原来原基础上,将代码整理,并加强安全性. 并按照WindowsAPI设计, ...

  6. 用CodeViz绘制函数调用关系图(call graph)

    CodeViz是<Understanding The Linux Virtual Memory Manager>(at Amazon,下载地址在页尾)的作者 Mel Gorman 写的一款 ...

  7. live555源码研究(三)------UsageEnvironment类

    一.UsageEnvironment类作用 1,不使用的时候回收当前的使用环境. 2,对返回结果消息和错误消息的维护. 二.类UsageEnvironment继承关系图

  8. 200. Number of Islands

    题目: Given a 2d grid map of '1's (land) and '0's (water), count the number of islands. An island is s ...

  9. 【剑指offer】求逆序对的个数

    2013-09-07 10:50:31 面试题36:在数组中的两个数字如果前面一个数字大于后面的数字,则这两个数字构成一个逆序对.输入一个数组,求出这个数组中逆序对的总数. 小结: 最直观的的方法是: ...

  10. android系统平台显示驱动开发简要:LCD常用接口篇『二』

    平台信息:内核:linux3.4.39系统:android4.4 平台:S5P4418(cortex a9) 作者:瘋耔(欢迎转载,请注明作者) 欢迎指正错误,共同学习.共同进步!! 关注博主新浪博客 ...