BZOJ3232: 圈地游戏
题解:
神题一道。。。
题解戳这里:http://hi.baidu.com/strongoier/item/0425f0e5814e010265db0095
分数规划可以看这里:http://blog.csdn.net/hhaile/article/details/8883652
无限orzzzzz
代码:实数网络流真蛋疼。。。
#include<cstdio> #include<cstdlib> #include<cmath> #include<cstring> #include<algorithm> #include<iostream> #include<vector> #include<map> #include<set> #include<queue> #include<string> #define inf 1000000000 #define maxn 200000+5 #define maxm 200000+5 #define eps 1e-10 #define ll long long #define pa pair<int,int> #define for0(i,n) for(int i=0;i<=(n);i++) #define for1(i,n) for(int i=1;i<=(n);i++) #define for2(i,x,y) for(int i=(x);i<=(y);i++) #define for3(i,x,y) for(int i=(x);i>=(y);i--) #define for4(i,x) for(int i=head[x],y;i;i=e[i].next) #define mod 1000000007 using namespace std; inline int read() { int x=,f=;char ch=getchar(); while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();} while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();} return x*f; }
int n,m,s,t,tot=,head[maxn],cur[maxn],h[maxn],num[][];
double maxflow,a[][][];
queue<int>q;
struct edge{int go,next;double v;}e[maxm];
inline void add(int x,int y,double v)
{
e[++tot]=(edge){y,head[x],v};head[x]=tot;
e[++tot]=(edge){x,head[y],};head[y]=tot;
}
bool bfs()
{
for(int i=s;i<=t;i++)h[i]=-;
q.push(s);h[s]=;
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=head[x];i;i=e[i].next)
if(e[i].v>eps&&h[e[i].go]==-)
{
h[e[i].go]=h[x]+;q.push(e[i].go);
}
}
return h[t]!=-;
}
double dfs(int x,double f)
{
if(x==t) return f;
double tmp,used=0.0;
for(int i=cur[x];i;i=e[i].next)
if(e[i].v>eps&&h[e[i].go]==h[x]+)
{
tmp=dfs(e[i].go,min(e[i].v,f-used));
e[i].v-=tmp;if(e[i].v>eps)cur[x]=i;
e[i^].v+=tmp;used+=tmp;
if(fabs(used-f)<eps)return f;
}
if(used<eps) h[x]=-;
return used;
}
void dinic()
{
maxflow=0.0;
while(bfs())
{
for (int i=s;i<=t;i++)cur[i]=head[i];maxflow+=dfs(s,inf);
}
}
bool check(double mid)
{
double ret=0.0;
memset(head,,sizeof(head));tot=;
for0(i,n+)for0(j,m+)
if(i&&i<n+&&j&&j<m+)add(s,num[i][j],a[i][j][]),ret+=a[i][j][];
else add(num[i][j],t,inf);
for0(i,n)for1(j,m)add(num[i][j],num[i+][j],mid*a[i][j][]),add(num[i+][j],num[i][j],mid*a[i][j][]);
for1(i,n)for0(j,m)add(num[i][j],num[i][j+],mid*a[i][j][]),add(num[i][j+],num[i][j],mid*a[i][j][]);
dinic();
return ret-maxflow>1e-;
} int main() { freopen("input.txt","r",stdin); freopen("output.txt","w",stdout); n=read();m=read();
for0(i,n+)for0(j,m+)num[i][j]=++tot;s=;t=++tot;
for1(i,n)for1(j,m)a[i][j][]=read();
for0(i,n)for1(j,m)a[i][j][]=read();
for1(i,n)for0(j,m)a[i][j][]=read();
double l=,r=n*m*;
while(r-l>1e-)
{
double mid=(l+r)/;
if(check(mid))l=mid;else r=mid;
}
printf("%.3f\n",l); return ; }
3232: 圈地游戏
Time Limit: 20 Sec Memory Limit: 128 MB
Submit: 498 Solved: 248
[Submit][Status]
Description
Input
Output
Sample Input
1 3 3 3
1 3 1 1
3 3 1 0
100 1 1 1
97 96 1 1
1 93 92 92
1 1 90 90
98 1 99 99 1
95 1 1 1 94
1 91 1 1 89
Sample Output
HINT
Source
BZOJ3232: 圈地游戏的更多相关文章
- $BZOJ3232$ 圈地游戏 网络流
正解:最小割+01分数规划 解题报告: 传送门$QwQ$ 感$jio$这个好像是$NOIp2018$集训的时候$cjk$学长讲01分数规划的时候港的,,,?$QwQ$虽然我还是不会嘤 首先看到这个分数 ...
- bzoj3232圈地游戏——0/1分数规划+差分建模+判环
Description DZY家的后院有一块地,由N行M列的方格组成,格子内种的菜有一定的价值,并且每一条单位长度的格线有一定的费用. DZY喜欢在地里散步.他总是从任意一个格点出发,沿着格线行走直到 ...
- 【BZOJ3232】圈地游戏(分数规划,网络流)
[BZOJ3232]圈地游戏(分数规划,网络流) 题面 BZOJ 题解 很神仙的一道题. 首先看到最大化的比值很容易想到分数规划.现在考虑分数规划之后怎么计算贡献. 首先每条边的贡献就变成了\(mid ...
- 【BZOJ3232】圈地游戏 分数规划+最小割
[BZOJ3232]圈地游戏 Description DZY家的后院有一块地,由N行M列的方格组成,格子内种的菜有一定的价值,并且每一条单位长度的格线有一定的费用. DZY喜欢在地里散步.他总是从任意 ...
- bzoj 3232: 圈地游戏
bzoj 3232: 圈地游戏 01分数规划,就是你要最大化\(\frac{\sum A}{\sum B}\),就二分这个值,\(\frac{\sum A}{\sum B} \geq mid\) \( ...
- BZOJ 3232: 圈地游戏 分数规划+判负环
3232: 圈地游戏 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 966 Solved: 466[Submit][Status][Discuss] ...
- 【BZOJ 3232】圈地游戏 二分+SPFA判环/最小割经典模型
最小割经典模型指的是“一堆元素进行选取,对于某个元素的取舍有代价或价值,对于某些对元素,选取后会有额外代价或价值”的经典最小割模型,建立倒三角进行最小割.这个二分是显然的,一开始我也是想到了最小割的那 ...
- bzoj 3232: 圈地游戏 01分数规划
题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=3232 题解: 首先我们看到这道题让我们最优化一个分式. 所以我们应该自然而然地想到01分 ...
- bzoj 3232 圈地游戏——0/1分数规划(或网络流)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 当然是0/1分数规划.但加的东西和减的东西不在一起,怎么办? 考虑把它们合在一起.因为 ...
随机推荐
- Pandas简易入门(二)
目录: 处理缺失数据 制作透视图 删除含空数据的行和列 多行索引 使用apply函数 本节主要介绍如何处理缺失的数据,可以参考原文:https://www. ...
- (转)Mac OS X内核编程,MAC驱动开发资源汇总
一.Mac OS X内核编程开发官方文档: I/O Kit Fundamentals: I/O Kit基础 - Mac OS X系统内核编程 https://developer.apple.com ...
- 内核升级修复nfs
Not starting NFS kernel daemon: no support in current kernel. sudo gedit /etc/init.d/nfs-kernel-serv ...
- JVM的组成部分与内存管理
JVM的组成部分与内存管理 JVM区域划分 由于Java程序是交由JVM执行的,所以我们在谈Java内存区域划分的时候事实上是指JVM内存区域划分.在讨论JVM内存区域划分之前,先来看一下Java程序 ...
- python学习笔记13(模块、包)
在Python中有一个概念叫做模块(module),比如在Python中要调用sqrt函数,必须用import关键字引入math这个模块,下面就来了解一下Python中的模块. 模块文件以.py后缀结 ...
- 2733: [HNOI2012]永无乡 - BZOJ
Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以 ...
- 1023: [SHOI2008]cactus仙人掌图 - BZOJ
Description如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回路 ...
- 解决win8 64位提示MSVCP71.DLL等组件缺失
把压缩包里面的DLL解压,只需要把其实缺失DLL复制到C:\Windows\SysWOW64即可.压缩包包含MSVCP70.DLL.MSVCP71.DLL.MSVCR70.DLL.MSVCR71.DL ...
- python time相关操作
1.获取当前时间的两种方法: 代码如下: import datetime,timenow = time.strftime("%Y-%m-%d %H:%M:%S")print now ...
- MySQL性能优化的21个最佳实践
http://www.searchdatabase.com.cn/showcontent_38045.htm MySQL性能优化的21个最佳实践 1. 为查询缓存优化你的查询 大多数的MySQL服务器 ...