C. Wilbur and Points
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Wilbur is playing with a set of n points on the coordinate plane. All points have non-negative integer coordinates. Moreover, if some point (x, y) belongs to the set, then all points (x', y'), such that 0 ≤ x' ≤ x and 0 ≤ y' ≤ y also belong to this set.

Now Wilbur wants to number the points in the set he has, that is assign them distinct integer numbers from 1 to n. In order to make the numbering aesthetically pleasing, Wilbur imposes the condition that if some point (x, y) gets number i, then all (x',y') from the set, such that x' ≥ x and y' ≥ y must be assigned a number not less than i. For example, for a set of four points (0, 0), (0, 1), (1, 0) and (1, 1), there are two aesthetically pleasing numberings. One is 1, 2, 3, 4 and another one is 1, 3, 2, 4.

Wilbur's friend comes along and challenges Wilbur. For any point he defines it's special value as s(x, y) = y - x. Now he gives Wilbur some w1, w2,..., wn, and asks him to find an aesthetically pleasing numbering of the points in the set, such that the point that gets number i has it's special value equal to wi, that is s(xi, yi) = yi - xi = wi.

Now Wilbur asks you to help him with this challenge.

Input

The first line of the input consists of a single integer n (1 ≤ n ≤ 100 000) — the number of points in the set Wilbur is playing with.

Next follow n lines with points descriptions. Each line contains two integers x and y (0 ≤ x, y ≤ 100 000), that give one point in Wilbur's set. It's guaranteed that all points are distinct. Also, it is guaranteed that if some point (x, y) is present in the input, then all points (x', y'), such that 0 ≤ x' ≤ x and 0 ≤ y' ≤ y, are also present in the input.

The last line of the input contains n integers. The i-th of them is wi ( - 100 000 ≤ wi ≤ 100 000) — the required special value of the point that gets number i in any aesthetically pleasing numbering.

Output

If there exists an aesthetically pleasant numbering of points in the set, such that s(xi, yi) = yi - xi = wi, then print "YES" on the first line of the output. Otherwise, print "NO".

If a solution exists, proceed output with n lines. On the i-th of these lines print the point of the set that gets number i. If there are multiple solutions, print any of them.

Sample test(s)
Input
5
2 0
0 0
1 0
1 1
0 1
0 -1 -2 1 0
Output
YES
0 0
1 0
2 0
0 1
1 1
Input
3
1 0
0 0
2 0
0 1 2
Output
NO
Note

In the first sample, point (2, 0) gets number 3, point (0, 0) gets number one, point (1, 0) gets number 2, point (1, 1) gets number 5 and point (0, 1) gets number 4. One can easily check that this numbering is aesthetically pleasing and yi - xi = wi.

In the second sample, the special values of the points in the set are 0,  - 1, and  - 2 while the sequence that the friend gives to Wilbur is 0, 1, 2. Therefore, the answer does not exist.

昏了头,做的时候想太多了.

先把a[i].y-a[i].x的数存进一个vector然后对于每个D[I],依次判断。

比如:对于D[I],如果V[D[I]].size==0那么输出”NO“;

V[D[I]]内部是按照先x,y排序的。

最后再判断一遍是否合法;

 #include<bits/stdc++.h>

 using namespace std;
typedef long long ll; #define N 211111 struct node
{
int x,y,id;
node(int _x=,int _y=,int _z=)
{
x=_x;
y=_y;
id=_z;
}
}a[N];
int d[N],ans[N];
vector<node>b[N+N]; int cmp(node a,node b)
{
// min(a.x,a.y)<min(b.x,b.y);
if (a.x==b.x) return a.y<b.y;
return a.x<b.x;
} int main()
{
int n;
cin>>n;
for (int i=;i<=n;i++)
{
cin>>a[i].x>>a[i].y;
b[a[i].y-a[i].x+N].push_back(node(a[i].x,a[i].y,i));//要先+N,因为可能为负数
} for (int i=;i<=n;i++)
{
cin>>d[i];
d[i]+=N; if (b[d[i]].size()==)
{
cout<<"NO";
return ;
}
sort(b[d[i]].begin(),b[d[i]].end(),cmp);//每次都排序 是有点费时间
ans[i]=(*b[d[i]].begin()).id;
b[d[i]].erase(b[d[i]].begin());
} for (int i=;i<n;i++)
if (a[ans[i+]].x<=a[ans[i]].x&&a[ans[i+]].y<=a[ans[i]].y)//这里必须是<=,可能需要想想
{
cout<<"NO";
return ;
} cout<<"YES"<<endl;
for (int i=;i<=n;i++)
cout<<a[ans[i]].x<<" "<<a[ans[i]].y<<endl;
return ;
}

Codeforces Round #331 (Div. 2) C. Wilbur and Points的更多相关文章

  1. Codeforces Round #331 (Div. 2)C. Wilbur and Points 贪心

    C. Wilbur and Points Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/596/ ...

  2. Codeforces Round #331 (Div. 2) E. Wilbur and Strings dfs乱搞

    E. Wilbur and Strings Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/596 ...

  3. Codeforces Round #331 (Div. 2) D. Wilbur and Trees 记忆化搜索

    D. Wilbur and Trees Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/596/p ...

  4. Codeforces Round #331 (Div. 2) B. Wilbur and Array 水题

    B. Wilbur and Array Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/596/p ...

  5. Codeforces Round #331 (Div. 2) A. Wilbur and Swimming Pool 水题

    A. Wilbur and Swimming Pool Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/conte ...

  6. Codeforces Round #331 (Div. 2) _A. Wilbur and Swimming Pool

    A. Wilbur and Swimming Pool time limit per test 1 second memory limit per test 256 megabytes input s ...

  7. Codeforces Round #331 (Div. 2) B. Wilbur and Array

    B. Wilbur and Array time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  8. Codeforces Round #331 (Div. 2)

    水 A - Wilbur and Swimming Pool 自从打完北京区域赛,对矩形有种莫名的恐惧.. #include <bits/stdc++.h> using namespace ...

  9. Codeforces Round #331 (Div. 2) A

    A. Wilbur and Swimming Pool time limit per test 1 second memory limit per test 256 megabytes input s ...

随机推荐

  1. c# 结课小结

    C#总结知识点 模块一:知识点梳理 输入输出表达式---数据类型---变量与常量 ----运算符---语句-----数组与集合---函数--结构体: 模块二:输入与输出 输入:  console.re ...

  2. IOS APP圆形图片的实现

    //设置圆形cornerRadius,是宽或高的一半 _imageView.layer.masksToBounds = YES; CGFloat w = _imageView.frame.size.w ...

  3. 【转】google谷歌百度收录网站的技巧方法,如何让百度收录?

    下面由本人巴山给大家讲述一下搜索引擎收录网站的技巧虚拟主机 (1)在网站上线前,要有足够多的内容网站优化 确保网站在正式上线的时候,有100页以上的充实内容,而且这些内容尽可能的进行下编辑,优化,自己 ...

  4. HTML5+CSS3-机器猫

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. JS内存泄露常见原因

    详细内容请点击 分享的笔记本-前端 开发中,我们常遇见的一些关于js内存泄露的问题,有时候我们常常会找半天找不出原因,这里给大家介绍简单便捷的方法 1.闭包上下文绑定后没有释放:   2.观察者模式在 ...

  6. ASP.NET缓存全解析7:第三方分布式缓存解决方案 Memcached和Cacheman 转自网络原文作者李天平

    Memcached — 分布式缓存系统 1.Memcached是什么? Memcached是高性能的,分布式的内存对象缓存系统,用于在动态应用中减少数据库负载,提升访问速度.Memcached通过在内 ...

  7. 【转载]】Microsoft SQL Server, 错误:4064的解决方法

    SQL SERVER – Fix : Error: 4064 – Cannot open user default database. Login failed. Login failed for u ...

  8. Android—SDCard数据存取&Environment简介

    1:Environment简介: Environment是android.os包下的一个类,谷歌官方文旦的解释为:Provides access to environment variables(提供 ...

  9. UI1_UITableViewSearchController

    // UI1_UITableViewSearchController // // Created by zhangxueming on 15/7/15. // Copyright (c) 2015年 ...

  10. AMQ学习笔记 - 14. 实践方案:基于ZooKeeper + ActiveMQ + replicatedLevelDB的主从部署

    概述 基于ZooKeeper + ActiveMQ + replicatedLevelDB,在Windows平台的主从部署方案. 主从部署可以提供数据备份.容错[1]的功能,但是不能提供负载均衡的功能 ...