C. Wilbur and Points
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Wilbur is playing with a set of n points on the coordinate plane. All points have non-negative integer coordinates. Moreover, if some point (x, y) belongs to the set, then all points (x', y'), such that 0 ≤ x' ≤ x and 0 ≤ y' ≤ y also belong to this set.

Now Wilbur wants to number the points in the set he has, that is assign them distinct integer numbers from 1 to n. In order to make the numbering aesthetically pleasing, Wilbur imposes the condition that if some point (x, y) gets number i, then all (x',y') from the set, such that x' ≥ x and y' ≥ y must be assigned a number not less than i. For example, for a set of four points (0, 0), (0, 1), (1, 0) and (1, 1), there are two aesthetically pleasing numberings. One is 1, 2, 3, 4 and another one is 1, 3, 2, 4.

Wilbur's friend comes along and challenges Wilbur. For any point he defines it's special value as s(x, y) = y - x. Now he gives Wilbur some w1, w2,..., wn, and asks him to find an aesthetically pleasing numbering of the points in the set, such that the point that gets number i has it's special value equal to wi, that is s(xi, yi) = yi - xi = wi.

Now Wilbur asks you to help him with this challenge.

Input

The first line of the input consists of a single integer n (1 ≤ n ≤ 100 000) — the number of points in the set Wilbur is playing with.

Next follow n lines with points descriptions. Each line contains two integers x and y (0 ≤ x, y ≤ 100 000), that give one point in Wilbur's set. It's guaranteed that all points are distinct. Also, it is guaranteed that if some point (x, y) is present in the input, then all points (x', y'), such that 0 ≤ x' ≤ x and 0 ≤ y' ≤ y, are also present in the input.

The last line of the input contains n integers. The i-th of them is wi ( - 100 000 ≤ wi ≤ 100 000) — the required special value of the point that gets number i in any aesthetically pleasing numbering.

Output

If there exists an aesthetically pleasant numbering of points in the set, such that s(xi, yi) = yi - xi = wi, then print "YES" on the first line of the output. Otherwise, print "NO".

If a solution exists, proceed output with n lines. On the i-th of these lines print the point of the set that gets number i. If there are multiple solutions, print any of them.

Sample test(s)
Input
5
2 0
0 0
1 0
1 1
0 1
0 -1 -2 1 0
Output
YES
0 0
1 0
2 0
0 1
1 1
Input
3
1 0
0 0
2 0
0 1 2
Output
NO
Note

In the first sample, point (2, 0) gets number 3, point (0, 0) gets number one, point (1, 0) gets number 2, point (1, 1) gets number 5 and point (0, 1) gets number 4. One can easily check that this numbering is aesthetically pleasing and yi - xi = wi.

In the second sample, the special values of the points in the set are 0,  - 1, and  - 2 while the sequence that the friend gives to Wilbur is 0, 1, 2. Therefore, the answer does not exist.

昏了头,做的时候想太多了.

先把a[i].y-a[i].x的数存进一个vector然后对于每个D[I],依次判断。

比如:对于D[I],如果V[D[I]].size==0那么输出”NO“;

V[D[I]]内部是按照先x,y排序的。

最后再判断一遍是否合法;

 #include<bits/stdc++.h>

 using namespace std;
typedef long long ll; #define N 211111 struct node
{
int x,y,id;
node(int _x=,int _y=,int _z=)
{
x=_x;
y=_y;
id=_z;
}
}a[N];
int d[N],ans[N];
vector<node>b[N+N]; int cmp(node a,node b)
{
// min(a.x,a.y)<min(b.x,b.y);
if (a.x==b.x) return a.y<b.y;
return a.x<b.x;
} int main()
{
int n;
cin>>n;
for (int i=;i<=n;i++)
{
cin>>a[i].x>>a[i].y;
b[a[i].y-a[i].x+N].push_back(node(a[i].x,a[i].y,i));//要先+N,因为可能为负数
} for (int i=;i<=n;i++)
{
cin>>d[i];
d[i]+=N; if (b[d[i]].size()==)
{
cout<<"NO";
return ;
}
sort(b[d[i]].begin(),b[d[i]].end(),cmp);//每次都排序 是有点费时间
ans[i]=(*b[d[i]].begin()).id;
b[d[i]].erase(b[d[i]].begin());
} for (int i=;i<n;i++)
if (a[ans[i+]].x<=a[ans[i]].x&&a[ans[i+]].y<=a[ans[i]].y)//这里必须是<=,可能需要想想
{
cout<<"NO";
return ;
} cout<<"YES"<<endl;
for (int i=;i<=n;i++)
cout<<a[ans[i]].x<<" "<<a[ans[i]].y<<endl;
return ;
}

Codeforces Round #331 (Div. 2) C. Wilbur and Points的更多相关文章

  1. Codeforces Round #331 (Div. 2)C. Wilbur and Points 贪心

    C. Wilbur and Points Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/596/ ...

  2. Codeforces Round #331 (Div. 2) E. Wilbur and Strings dfs乱搞

    E. Wilbur and Strings Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/596 ...

  3. Codeforces Round #331 (Div. 2) D. Wilbur and Trees 记忆化搜索

    D. Wilbur and Trees Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/596/p ...

  4. Codeforces Round #331 (Div. 2) B. Wilbur and Array 水题

    B. Wilbur and Array Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/596/p ...

  5. Codeforces Round #331 (Div. 2) A. Wilbur and Swimming Pool 水题

    A. Wilbur and Swimming Pool Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/conte ...

  6. Codeforces Round #331 (Div. 2) _A. Wilbur and Swimming Pool

    A. Wilbur and Swimming Pool time limit per test 1 second memory limit per test 256 megabytes input s ...

  7. Codeforces Round #331 (Div. 2) B. Wilbur and Array

    B. Wilbur and Array time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  8. Codeforces Round #331 (Div. 2)

    水 A - Wilbur and Swimming Pool 自从打完北京区域赛,对矩形有种莫名的恐惧.. #include <bits/stdc++.h> using namespace ...

  9. Codeforces Round #331 (Div. 2) A

    A. Wilbur and Swimming Pool time limit per test 1 second memory limit per test 256 megabytes input s ...

随机推荐

  1. 在centos7中添加一个新用户并授权

    参考地址:http://www.cnblogs.com/woshimrf/p/5906084.html 创建新用户 创建一个用户名为:zhangbiao [root@localhost ~]# add ...

  2. vue-cli 发布(译)

    如果你现在正在使用Vue.js,当你构建一个原型的时候,你所需要做的通常就是通过<script>把Vue.js引入进来,然后就完事了.但是真实情况往往不是这样的.当我们真正开发一个应用的时 ...

  3. ASP-----分页功能的实现

    WEB 分页功能的实现后端C#代码部分: // 建立Linq 数据库的连接 private MYDateDataContext context = new MYDateDataContext(); / ...

  4. 数理方程:Fourier变换与卷积

    更新:1 APR 2016 关于傅里叶级数参看数理方程:Fourier级数 Fourier变换: 对于满足Dirichlet条件的函数\(f(t)\)在其连续点处定义 \(F(\omega)=\int ...

  5. 简洁的drag效果,自由拖拽div的实现及注意点

    偶然间看到了以前做的一个简洁的div拖拽效果,修改了一下加点注释,经测试完美通过firefox/chrome/ie6-11,现拿来分享一下. 先说一下实现原理及要点,最主要的有三步.第一步是mouse ...

  6. 根据不同的浏览器对不同元素进行css调整

    <!if firefox> .element { top:4px; } <![endif]> <!if chrome> .element { top:6px; } ...

  7. HttpURLConnection&HttpClient网络通信

    一:HttpURLConnection简介: 用于发送或者接受HTTP协议请求的类,获得的数据可以是任意类型和长度,这个类可以用于发送和接收流数据,其长度事先不知道. 使用这个类遵循一下模式: 获得一 ...

  8. iOS UIView简单缩放动画

    @interface ViewController () { UIView *animationView; UIButton *button; CGPoint animationPoint; } @e ...

  9. DWZ (JUI) 教程 dwz框架 刷新dialog解决方案

    在DWZ中进行ajax表单提交后,通过回调函数来返回状态结果,以及返回是否需要刷新父页的navTabId.       DWZ给我们提供了两个回调函数,一个是子窗口为navTab的navTabAjax ...

  10. sql_查询select

    sql_查询select   /****** Script for SelectTopNRows command from SSMS ******/ [r_gonghao] ,[r_mingzi] , ...