[Everyday Mathematics]20150117
设 $f:\bbR^{n\times n}\to\bbR$ 适合 $$\bex f(cA+B)=cf(A)+f(B),\quad f(AB)=f(BA),\quad\forall\ c\in\bbR,\ A,B\in \bbR^{n\times n}. \eex$$ 试证: $\exists\ \lm\in\bbR,\st f=\lm \cdot\tr$.
[Everyday Mathematics]20150117的更多相关文章
- [Everyday Mathematics]20150304
证明: $$\bex \frac{2}{\pi}\int_0^\infty \frac{1-\cos 1\cos \lm-\lm \sin 1\sin \lm}{1-\lm^2}\cos \lm x\ ...
- [Everyday Mathematics]20150303
设 $f$ 是 $\bbR$ 上的 $T$ - 周期函数, 试证: $$\bex \int_T^\infty\frac{f(x)}{x}\rd x\mbox{ 收敛 } \ra \int_0^T f( ...
- [Everyday Mathematics]20150302
$$\bex |p|<\frac{1}{2}\ra \int_0^\infty \sex{\frac{x^p-x^{-p}}{1-x}}^2\rd x =2(1-2p\pi \cot 2p\pi ...
- [Everyday Mathematics]20150301
设 $f(x)$ 在 $[-1,1]$ 上有任意阶导数, $f^{(n)}(0)=0$, 其中 $n$ 是任意正整数, 且存在 $C>0$, $$\bex |f^{(n)}(x)|\leq C^ ...
- [Everyday Mathematics]20150228
试证: $$\bex \int_0^\infty \sin\sex{x^3+\frac{\pi}{4}}\rd x =\frac{\sqrt{6}+\sqrt{2}}{4}\int_0^\infty ...
- [Everyday Mathematics]20150227
(Marden's Theorem) 设 $p(z)$ 是三次复系数多项式, 其三个根 $z_1,z_2,z_3$ 不共线; 再设 $T$ 是以 $z_1,z_2,z_3$ 为顶点的三角形. 则存在唯 ...
- [Everyday Mathematics]20150226
设 $z\in\bbC$ 适合 $|z+1|>2$. 试证: $$\bex |z^3+1|>1. \eex$$
- [Everyday Mathematics]20150225
设 $f:\bbR\to\bbR$ 二次可微, 适合 $f(0)=0$. 试证: $$\bex \exists\ \xi\in\sex{-\frac{\pi}{2},\frac{\pi}{2}},\s ...
- [Everyday Mathematics]20150224
设 $A,B$ 是 $n$ 阶实对称矩阵, 它们的特征值 $>1$. 试证: $AB$ 的特征值的绝对值 $>1$.
随机推荐
- [转载]Spring Annotation Based Configuration
Annotation injection is performed before XML injection, thus the latter configuration will override ...
- JsRender系列demo(4)-if else
<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...
- .NET复习笔记
.NET 基础知识点汇总 课前知识储备. 一.C#与.NET的区别? 1..NET/dotnet:一般指.Net Framework框架,一种平台,一种技术 2.C#(sharp):一种编程语言,可以 ...
- Hadoop格式化HDFS报错java.net.UnknownHostException: localhost.localdomain: localhost.localdomain
异常描述: 在对HDFS格式化,执行hadoop namenode -format命令时,出现未知的主机名的问题,异常信息如下所示: [shirdrn@localhost bin]$ hadoop n ...
- P1005 采药
P1005 采药 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 NOIP2005复赛普及组第三题 描述 辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的 ...
- 李洪强iOS学习交流群-iOS大神群
iOS学习大神群-群号:483959373
- 猜拳 GuessFist
import java.util.Scanner;import java.util.Random;/***跟电脑玩石头剪刀布,需要从控制台输入信息,*然后去判断,然后给予反馈信息*/public cl ...
- 致诸位新程序员:来自Chuck Jazdzewski慈父般的忠告
记住这几句话,学无止境.(Never stop learning.)沟通至关重要.(Communication is critical.)履行承诺,胜过交付.(Under promise, over ...
- .md文件 Markdown 语法说明
Markdown 语法说明 (简体中文版) / (点击查看快速入门) 概述 宗旨 兼容 HTML 特殊字符自动转换 区块元素 段落和换行 标题 区块引用 列表 代码区块 分隔线 区段元素 链接 强调 ...
- 机器人学 —— 轨迹规划(Introduction)
轨迹规划属于机器人学中的上层问题,其主要目标是计划机器人从A移动到B并避开所有障碍的路线. 1.轨迹计划的对象 轨迹规划的对象是map,机器人通过SLAM获得地map后,则可在地图中选定任意两点进行轨 ...