Catching Fish

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1113    Accepted Submission(s): 411

Problem Description
Ignatius likes catching fish very much. He has a fishnet whose shape is a circle of radius one. Now he is about to use his fishnet to catch fish. All the fish are in the lake, and we assume all the fish will not move when Ignatius catching them. Now Ignatius wants to know how many fish he can catch by using his fishnet once. We assume that the fish can be regard as a point. So now the problem is how many points can be enclosed by a circle of radius one.

Note: If a fish is just on the border of the fishnet, it is also caught by Ignatius.

 
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.

Each test case starts with a positive integer N(1<=N<=300) which indicate the number of fish in the lake. Then N lines follow. Each line contains two floating-point number X and Y (0.0<=X,Y<=10.0). You may assume no two fish will at the same point, and no two fish are closer than 0.0001, no two fish in a test case are approximately at a distance of 2.0. In other words, if the distance between the fish and the centre of the fishnet is smaller 1.0001, we say the fish is also caught.

 
Output
For each test case, you should output the maximum number of fish Ignatius can catch by using his fishnet once.

 
Sample Input
4
3
6.47634 7.69628
5.16828 4.79915
6.69533 6.20378
6
7.15296 4.08328
6.50827 2.69466
5.91219 3.86661
5.29853 4.16097
6.10838 3.46039
6.34060 2.41599
8
7.90650 4.01746
4.10998 4.18354
4.67289 4.01887
6.33885 4.28388
4.98106 3.82728
5.12379 5.16473
7.84664 4.67693
4.02776 3.87990
20
6.65128 5.47490
6.42743 6.26189
6.35864 4.61611
6.59020 4.54228
4.43967 5.70059
4.38226 5.70536
5.50755 6.18163
7.41971 6.13668
6.71936 3.04496
5.61832 4.23857
5.99424 4.29328
5.60961 4.32998
6.82242 5.79683
5.44693 3.82724
6.70906 3.65736
7.89087 5.68000
6.23300 4.59530
5.92401 4.92329
6.24168 3.81389
6.22671 3.62210
 
Sample Output
2
5
5
11
 
Author
Ignatius.L
 


题目大意:给你n个点的横纵坐标,问你用一个单位圆,最多能使得多少点在圆内,包括圆上的点。


      解题思路:开始比较迷茫,不知道用什么方法来解,后来觉得可以枚举,但又想不清楚怎么枚举。这样,我们每次找两个点,看能否根据这两点确定一个单位圆,然后看这个圆能包含其它多少点在这个圆内!

       题目地址:Catching Fish

开始是用数组写的,时间直接2s开外了!
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdio>
using namespace std;
int n;
struct node
{
double x;
double y;
};
node a[305]; double dis(node p1,node p2)
{
return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
} int cal(int p1,int p2)
{
node t1,t2,t3,t4;
t1=a[p1],t2=a[p2];
double s,tmp,xx,yy;
tmp=dis(t1,t2);
s=tmp/2.0;
s=sqrt(1.0-s*s); //s为圆心到t1,t2弦长的距离
int ans1=0,ans2=0,i;
xx=(t1.y-t2.y)/tmp;
yy=(t2.x-t1.x)/tmp; //(xx,yy)相当于与弦长垂直的单位法向量
t3.x=(t1.x+t2.x)/2.0,t3.y=(t1.y+t2.y)/2.0;
t4.x=t3.x+s*xx,t4.y=t3.y+s*yy; //t4为圆心
for(i=0;i<n;i++)
{
if(dis(t4,a[i])<1.0001)
ans1++;
}
t4.x=t3.x-s*xx,t4.y=t3.y-s*yy; //t4为圆心
for(i=0;i<n;i++)
{
if(dis(t4,a[i])<1.0001)
ans2++;
}
return ans1>ans2?ans1:ans2;
} int main()
{
int i,j;
int tes;
scanf("%d",&tes); while(tes--)
{
scanf("%d",&n);
for(i=0;i<n;i++)
scanf("%lf%lf",&a[i].x,&a[i].y);
int num;
int res=1;
for(i=0;i<n;i++)
for(j=i+1;j<n;j++)
{
if(dis(a[i],a[j])<2.0001)
{
num=cal(i,j);
if(num>res) res=num;
}
} printf("%d\n",res);
}
return 0;
} //2406MS

后来改用数组写了,时间终于降到了1s内,Best solutions里面还是有很多两三百ms的,Orz!!
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdio>
using namespace std;
int n;
double a[305][2]; double dis(double *b1,double *b2)
{
return sqrt((b1[0]-b2[0])*(b1[0]-b2[0])+(b1[1]-b2[1])*(b1[1]-b2[1]));
} int cal(int p1,int p2)
{
double t1[2],t2[2],t3[2],t4[2];
t1[0]=a[p1][0],t1[1]=a[p1][1],t2[0]=a[p2][0],t2[1]=a[p2][1];
double s,tmp,xx,yy;
tmp=dis(t1,t2);
s=tmp/2.0;
s=sqrt(1.0-s*s); //s为圆心到t1,t2弦长的距离
int ans1=0,ans2=0,i;
xx=(t1[1]-t2[1])/tmp;
yy=(t2[0]-t1[0])/tmp; //(xx,yy)相当于与弦长垂直的单位法向量
t3[0]=(t1[0]+t2[0])/2.0,t3[1]=(t1[1]+t2[1])/2.0;
t4[0]=t3[0]+s*xx,t4[1]=t3[1]+s*yy; //t4为圆心
for(i=0;i<n;i++)
{
if(dis(t4,a[i])<1.0001)
ans1++;
}
t4[0]=t3[0]-s*xx,t4[1]=t3[1]-s*yy; //t4为圆心
for(i=0;i<n;i++)
{
if(dis(t4,a[i])<1.0001)
ans2++;
}
return ans1>ans2?ans1:ans2;
} int main()
{
int i,j;
int tes;
scanf("%d",&tes); while(tes--)
{
scanf("%d",&n);
for(i=0;i<n;i++)
scanf("%lf%lf",&a[i][0],&a[i][1]);
int num;
int res=1;
for(i=0;i<n;i++)
for(j=i+1;j<n;j++)
{
if(dis(a[i],a[j])<2.0001)
{
num=cal(i,j);
if(num>res) res=num;
}
} printf("%d\n",res);
}
return 0;
} //984MS G++

HDU 1077Catching Fish(简单计算几何)的更多相关文章

  1. HDU 4643 GSM 简单计算几何

    今天比赛的时候略坑, admin告诉我询问Q的个数不超过n^2, 赛后敲了个 O(Q*m^3)的复杂度,但这个复杂度常数比较低,可能在除以个小常数, 300ms过了,真心无语,数据应该水了吧,比赛的时 ...

  2. HDU 2085 核反应堆 --- 简单递推

    HDU 2085 核反应堆 /* HDU 2085 核反应堆 --- 简单递推 */ #include <cstdio> ; long long a[N], b[N]; //a表示高能质点 ...

  3. HDU 5130 Signal Interference(计算几何 + 模板)

    HDU 5130 Signal Interference(计算几何 + 模板) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5130 Descripti ...

  4. ●POJ 1556 The Doors(简单计算几何+最短路)

    ●赘述题目 10*10的房间内,有竖着的一些墙(不超过18个).问从点(0,5)到(10,5)的最短路. 按照输入样例,输入的连续5个数,x,y1,y2,y3,y4,表示(x,0--y1),(x,y2 ...

  5. 2018.07.04 POJ 2398 Toy Storage(二分+简单计算几何)

    Toy Storage Time Limit: 1000MS Memory Limit: 65536K Description Mom and dad have a problem: their ch ...

  6. Least Common Multiple (HDU - 1019) 【简单数论】【LCM】【欧几里得辗转相除法】

    Least Common Multiple (HDU - 1019) [简单数论][LCM][欧几里得辗转相除法] 标签: 入门讲座题解 数论 题目描述 The least common multip ...

  7. 七夕节 (HDU - 1215) 【简单数论】【找因数】

    七夕节 (HDU - 1215) [简单数论][找因数] 标签: 入门讲座题解 数论 题目描述 七夕节那天,月老来到数字王国,他在城门上贴了一张告示,并且和数字王国的人们说:"你们想知道你们 ...

  8. [HDU 4082] Hou Yi's secret (简单计算几何)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4082 题目大意: 给你n个点,问能最多构成多少个相似三角形. 用余弦定理,计算三个角度,然后暴力数有多 ...

  9. HDU 4617 Weapon (简单三维计算几何,异面直线距离)

    Weapon Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Subm ...

随机推荐

  1. wifi详解(一)

    1        WLAN技术 WLAN是英文WirelessLAN的缩写,就是无线局域网的意思.无线以太网技术是一种基于无线传输的局域网技术,与有线网络技术相比,具有灵活.建网迅速.个人化等特点.将 ...

  2. Java 小片段

    public static String listToString(List<String> stringList){ if (stringList==null) { return nul ...

  3. #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

    #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)宏的运行机理:1. ( (TYPE *)0 ) 将零转型为TY ...

  4. Activity与Activity之间,Fragment与Fragment之间通过Bundle传值的研究

    一.Fragment与Activity的通讯   在使用fragment的时候,通常的用法都是使用一个activity来管理不同的fragment,所以每个fragment与activity的及时通讯 ...

  5. C++实现网格水印之调试笔记(六)—— 提取完成

    昨天在修改了可以调试出来的错误之后,提取出的水印和嵌入的仍然相去甚远.这个时候我觉得有必要整理一下嵌入和提取的整个过程. 嵌入过程: Step1,嵌入的时候对网格的拉普拉斯矩阵L进行特征值分解,得到特 ...

  6. flashback table恢复数据

    flashback table恢复数据 flashback table主要是是用undo 表空间的内容,进行对数据修改的回退操作 语法如下: 根据scn号来进行回退 SQL> flashback ...

  7. 怎么对HTML 5的特性做检测?

    原译文地址:http://www.ido321.com/1116.html 原文:Detect HTML5 Features 译文:HTML5特性检测 译者:dwqs 随 着HTML 5的流行,现在H ...

  8. [转]使用CSS3 Grid布局实现内容优先

    使用CSS3 Grid布局实现内容优先  http://www.w3cplus.com/css3/css3-grid-layout-module.html 本文由大漠根据Rachel Andrew的& ...

  9. Windows服务-手把手带你体验

    Microsoft Windows 服务(即,以前的 NT 服务)使您能够创建在它们自己的 Windows 会话中可长时间运行的可执行应用程序.这些服务可以在计算机启动时自动启动,可以暂停和重新启动而 ...

  10. Lucene Query Term Weighting

    方法 public static Query TermWeighting(Query tquery,Map<String,Float>term2weight){ BooleanQuery ...