BZOJ 2705: [SDOI2012]Longge的问题 GCD
2705: [SDOI2012]Longge的问题
Time Limit: 20 Sec
Memory Limit: 256 MB
题目连接
http://www.lydsy.com/JudgeOnline/problem.php?id=2705
Description
Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N)。
Input
一个整数,为N。
Output
一个整数,为所求的答案。
Sample Input
6
Sample Output
15
HINT
题意
题解:
题解:http://hzwer.com/3470.html
题目中要求出∑gcd(i,N)(1<=i<=N)。
枚举n的约数k,令s(k)为满足gcd(m,n)=k,(1<=m<=n)m的个数,则ans=sigma(k*s(k)) (k为n的约数)
因为gcd(m,n)=k,所以gcd(m/k,n/k)=1,于是s(k)=euler(n/k)
phi可以在根号的时间内求出
代码:
//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <bitset>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 200051
#define mod 10007
#define eps 1e-9
int Num;
//const int inf=0x7fffffff; //нчоч╢С
const int inf=0x3f3f3f3f;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//************************************************************************************** ll n;
int m;
ll phi(ll x)
{
ll t=x;
for(ll i=;i<=m;i++)
{
if(x%i==)
{
t=t/i*(i-);
while(x%i==)x/=i;
}
}
if(x>)t=t/x*(x-);
return t;
}
int main()
{
cin>>n;
ll ans=;
m = sqrt(n);
for(int i=;i<=sqrt(n);i++)
{
if(n%i==)
{
ans+=i*phi(n/i);
if(i*i<n)
ans+=(ll)(n/i)*phi(i);
}
}
cout<<ans<<endl;
}
BZOJ 2705: [SDOI2012]Longge的问题 GCD的更多相关文章
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2554 Solved: 1566[Submit][ ...
- bzoj 2705: [SDOI2012]Longge的问题 歐拉函數
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1035 Solved: 669[Submit][S ...
- Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1959 Solved: 1229[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题( 数论 )
T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好 ...
- [bzoj]2705: [SDOI2012]Longge的问题[数论][数学][欧拉函数][gcd]
[bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需 ...
- bzoj 2705: [SDOI2012]Longge的问题——欧拉定理
Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...
- BZOJ 2705 [SDOI2012]Longge的问题(欧拉函数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2705 [题目大意] 求出∑gcd(i,N)(1<=i<=N) [题解] $ ...
- [bzoj 2705][SDOI2012]Longge的问题(数学)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2705 分析: 设k为n的因数 设f[k]为gcd(x,n)==k的x的个数,容易知道a ...
随机推荐
- 关于web安全
从技术到安全, 这是一个趋势. 以前追求的是比较炫酷的技术, 等实现过后发现, 自己还能做什么. 炫技完了之后,差不多就该到悟道的时候了. 用户安全, 就是一个很大的禅. 苹果拒绝 FBI, goog ...
- K2 学习笔记
转:http://www.cnblogs.com/kaixuanpisces/category/149223.html k2 简介 工作流介绍 k2流程设计简介 K2流程设计详细版(图文)一 K2流程 ...
- 9月5日 华为2014校园招聘的机试题目_C语言版答案
手有些生了. 题目: 通过键盘输入一串小写字母(a~z)组成的字符串.请编写一个字符串压缩程序,将字符串中连续出席的重复字母进行压缩,并输出压缩后的字符串.压缩规则:1.仅压缩连续重复出现的字符.比如 ...
- java web 学习十三(使用session防止表单重复提交)
在平时开发中,如果网速比较慢的情况下,用户提交表单后,发现服务器半天都没有响应,那么用户可能会以为是自己没有提交表单,就会再点击提交按钮重复提交表单,我们在开发中必须防止表单重复提交. 一.表单重复提 ...
- MySql相关及如何删除MySql服务
又会一招–如何删除MySql服务 进入“控制面板->管理工具->服务”查看才发现,虽然MYSQL已经卸载了,但是MYSQL服务仍然残留在系统服务里.又不想改服务名,改怎么办呢. 后来上百度 ...
- linux命令——磁盘管理pwd
Linux中用 pwd 命令来查看”当前工作目录“的完整路径(绝对路径). 简单得说,每当你在终端进行操作时,你都会有一个当前工作目录.在不太确定当前位置时,就会使用pwd来判定当前目录在文件系统内的 ...
- codeforces 687B - Remainders Game 数学相关(互质中国剩余定理)
题意:给你x%ci=bi(x未知),是否能确定x%k的值(k已知) ——数学相关知识: 首先:我们知道一些事情,对于k,假设有ci%k==0,那么一定能确定x%k的值,比如k=5和ci=20,知道x% ...
- Oracle中错误代码ORA-02292 违反了完整性约束条件解决
百度处理: A表被B表引用,删除A表的时候提示ORA-02292,A表的主键被引用了,虽然已经把B表的数据全部删除掉,但仍然删除不了A表的数据.解决办法: 用禁用约束语句把A表的主键约束给禁用掉.1. ...
- cocos2d-x 详解之 CCTexture2D(纹理图片)和 CCTextureCache(纹理缓存)
精灵和动画都涉及到纹理图片的使用,所以在研究精灵与动画之前,我们先来了解一下纹理图片类CCTexture2D和纹理缓存CCTextureCache的原理: 当一张图片被加载到内存后,它是以纹理的形式存 ...
- 开通GitHub以及使用笔记
把小游戏的代码和博客迁移到GitHub上,路径是:https://github.com/GAMTEQ,欢迎访问 以下是使用GITHUB的一些命令 504 cd code 506 mkdir Fai ...