scikit-learn一般实例之七:使用多输出评估器进行人脸完成
本例将展示使用多输出评估期来实现图像完成.目标是根据给出的上半部分人脸预测人脸的下半部分.
第一列展示的是真实的人脸,接下来的列分别展示了随机森林,K近邻,线性回归和岭回归对人脸下半部分的预测.

# coding:utf-8
from pylab import *
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_olivetti_faces
from sklearn.utils.validation import check_random_state
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import RidgeCV
# 加载人脸数据集
data = fetch_olivetti_faces()
targets = data.target
data = data.images.reshape((len(data.images), -1))
train = data[targets < 30]
test = data[targets >= 30] # 在独立的人上进行测试
# 在人群子集上进行测试
n_faces = 5
rng = check_random_state(4)
face_ids = rng.randint(test.shape[0], size=(n_faces, ))
test = test[face_ids, :]
n_pixels = data.shape[1]
X_train = train[:, :np.ceil(0.5 * n_pixels)] # 上半部分人脸
y_train = train[:, np.floor(0.5 * n_pixels):] # 下半部分人脸
X_test = test[:, :np.ceil(0.5 * n_pixels)]
y_test = test[:, np.floor(0.5 * n_pixels):]
# 拟合估测器
ESTIMATORS = {
"Extra trees": ExtraTreesRegressor(n_estimators=10, max_features=32,
random_state=0),
"K-nn": KNeighborsRegressor(),
"Linear regression": LinearRegression(),
"Ridge": RidgeCV(),
}
ESTIMATORS_zh = {
"Extra trees":u"随机树",
"K-nn": u"K近邻",
"Linear regression":u"线性回归" ,
"Ridge": u"岭回归",
}
y_test_predict = dict()
for name, estimator in ESTIMATORS.items():
estimator.fit(X_train, y_train)
y_test_predict[name] = estimator.predict(X_test)
# 绘制完成的人脸
myfont = matplotlib.font_manager.FontProperties(fname="Microsoft-Yahei-UI-Light.ttc")
print myfont
mpl.rcParams['axes.unicode_minus'] = False
image_shape = (64, 64)
n_cols = 1 + len(ESTIMATORS)
plt.figure(figsize=(2. * n_cols, 2.26 * n_faces))
plt.suptitle(u"采用多输出估测器进行人脸完成", size=16,fontproperties=myfont)
for i in range(n_faces):
true_face = np.hstack((X_test[i], y_test[i]))
sub = plt.subplot(n_faces, n_cols, i * n_cols + 1)
if not i:
sub.set_title(u"真实人脸",fontproperties=myfont)
sub.axis("off")
sub.imshow(true_face.reshape(image_shape),
cmap=plt.cm.gray,
interpolation="nearest")
for j, est in enumerate(sorted(ESTIMATORS)):
completed_face = np.hstack((X_test[i], y_test_predict[est][i]))
sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j)
if not i:
sub.set_title(ESTIMATORS_zh[est],fontproperties=myfont)
sub.axis("off")
sub.imshow(completed_face.reshape(image_shape),
cmap=plt.cm.gray,
interpolation="nearest")
plt.show()
scikit-learn一般实例之七:使用多输出评估器进行人脸完成的更多相关文章
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Scikit Learn
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.
- Expression Blend实例中文教程(11) - 视觉管理器快速入门Visual State Manager(VSM)
Expression Blend实例中文教程(11) - 视觉管理器快速入门Visual State Manager(V 时间:2010-04-12 16:06来源:SilverlightChina. ...
- Query意图分析:记一次完整的机器学习过程(scikit learn library学习笔记)
所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的 ...
- 机器学习-scikit learn学习笔记
scikit-learn官网:http://scikit-learn.org/stable/ 通常情况下,一个学习问题会包含一组学习样本数据,计算机通过对样本数据的学习,尝试对未知数据进行预测. 学习 ...
- Linear Regression with Scikit Learn
Before you read This is a demo or practice about how to use Simple-Linear-Regression in scikit-lear ...
随机推荐
- OpenCASCADE BRep Projection
OpenCASCADE BRep Projection eryar@163.com 一网友发邮件问我下图所示的效果如何在OpenCASCADE中实现,我的想法是先构造出螺旋线,再将螺旋线投影到面上. ...
- JdbcTemplate+PageImpl实现多表分页查询
一.基础实体 @MappedSuperclass public abstract class AbsIdEntity implements Serializable { private static ...
- Asp.Net Core 项目实战之权限管理系统(4) 依赖注入、仓储、服务的多项目分层实现
0 Asp.Net Core 项目实战之权限管理系统(0) 无中生有 1 Asp.Net Core 项目实战之权限管理系统(1) 使用AdminLTE搭建前端 2 Asp.Net Core 项目实战之 ...
- interpreter(解释器模式)
一.引子 其实没有什么好的例子引入解释器模式,因为它描述了如何构成一个简单的语言解释器,主要应用在使用面向对象语言开发编译器中:在实际应用中,我们可能很少碰到去构造一个语言的文法的情况. 虽然你几乎用 ...
- SAP CRM 树视图(TREE VIEW)
树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...
- BPM配置故事之案例14-数据字典与数据联动
小明遇到了点麻烦,他昨天又收到了行政主管发来的邮件,要求把出差申请单改由H3 BPM进行,表单如下 行政主管的出差申请表 小明对表单进行了调整,设计出了一份适合在系统中使用的表单,但在"出差 ...
- 热修复-Nuwa学习篇
nuwa热修复是基于qq空间团队的思路,最近的热度话题了,很多种方案,自己先研究几种方案,基本上都各有优势,学习肯定得先挑个软柿子捏了,自己对比了一下,发现nuwa代码量少点,所以就决定了,先研究nu ...
- IOS开发基础知识--碎片51
1:https关闭证书跟域名的验证 AFSecurityPolicy *securityPolicy = [AFSecurityPolicy defaultPolicy]; securityPolic ...
- SQL Server 2014聚集列存储索引
转发请注明引用和原文博客(http://www.cnblogs.com/wenBlog) 简介 之前已经写过两篇介绍列存储索引的文章,但是只有非聚集列存储索引,今天再来简单介绍一下聚集的列存储索引,也 ...
- MongoDB学习笔记二—Shell操作
数据类型 MongoDB在保留JSON基本键/值对特性的基础上,添加了其他一些数据类型. null null用于表示空值或者不存在的字段:{“x”:null} 布尔型 布尔类型有两个值true和fal ...