浅谈\(DP\):https://www.cnblogs.com/AKMer/p/10437525.html

题目传送门:https://www.luogu.org/problemnew/show/P1004

设\(f[i][j][k][l]\)表示第一条路从\((1,1)\)走到\((i,j)\),第二条路从\((1,1)\)走到\((k,l)\)能取的最大权值。

然后直接暴力四种更新。洛谷题解对于优化也讲了不少。(省选前刷这种水题是不是搞错了什么)

时间复杂度:\(O(n^4)\)

空间复杂度:\(O(n^4)\)

代码如下:

#include <cstdio>
#include <algorithm>
using namespace std; int n;
int num[10][10];
int f[10][10][10][10]; int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
} int main() {
n=read();
while(1) {
int x=read(),y=read(),v=read();
if(!(x+y+v))break;num[x][y]=v;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
for(int l=1;l<=n;l++) {
f[i][j][k][l]=max(f[i][j][k][l],f[i-1][j][k-1][l]+num[i][j]);
f[i][j][k][l]=max(f[i][j][k][l],f[i-1][j][k][l-1]+num[i][j]);
f[i][j][k][l]=max(f[i][j][k][l],f[i][j-1][k-1][l]+num[i][j]);
f[i][j][k][l]=max(f[i][j][k][l],f[i][j-1][k][l-1]+num[i][j]);
if(i!=k||j!=l)f[i][j][k][l]+=num[k][l];
}
printf("%d\n",f[n][n][n][n]);
return 0;
}

洛谷【P1004】方格取数的更多相关文章

  1. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

  2. 洛谷 P1004 方格取数 题解

    P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...

  3. 洛谷 P1004 方格取数 【多进程dp】

    题目链接:https://www.luogu.org/problemnew/show/P1004 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 ...

  4. 洛谷P1004 方格取数

    网络流大法吼 不想用DP的我选择了用网络流-- 建模方法: 从源点向(1,1)连一条容量为2(走两次),费用为0的边 从(n,n)向汇点连一条容量为2,费用为0的边 每个方格向右边和下边的方格连一条容 ...

  5. 洛谷 P1004 方格取数

    题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 ...

  6. 【动态规划】洛谷P1004方格取数

    题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 ...

  7. 洛谷P1004 方格取数-四维DP

    题目描述 设有 N \times NN×N 的方格图 (N \le 9)(N≤9) ,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 00 .如下图所示(见样例): A 0 0 0 0 0 ...

  8. Codevs 1043 ==洛谷 P1004 方格取数

    题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 ...

  9. 洛谷 P1004 方格取数 【多线程DP/四维DP/】

    题目描述(https://www.luogu.org/problemnew/show/1004) 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0. ...

  10. 四维动规 洛谷P1004方格取数

    分析:这个题因为数据量非常小,可以直接用四维的DP数组 dp[i][j][k][l]表示第一个人走到位置(i,j),第二个人走到位置[k][l]时所取的数的最大和 状态转移方程可以轻松得出为:dp[i ...

随机推荐

  1. Linux权限管理 文件特殊权限

    概述 除了我们前面介绍的rwx权限外,Linux中还有另外三种特殊权限:SUID,SGID,SBIT   权限    执行条件 执行示例 SUID s出现在文件所有者的x权限上. 1. SUID只能用 ...

  2. Ubuntu系统常用操作命令

    1.基本命令: sudo 提升用户权限为root用户 ls 显示文件内容 cd 进入指定路径,后接路径参数 如cd /进入根目录 cd -进入用户目录 cd ..返回上一级目录 mv xx.txt x ...

  3. 树莓派连接DHT11温湿度传感器(python)

    介绍 DHT11作为一个廉价配件,同时包含了温度.湿度传感器,而且,编码使用也非常简单. 本文介绍如果在树莓派中使用 DHT11,代码是Python.如果有任何疑问,欢迎在下面留言. 接线 VCC接5 ...

  4. STM32系列第15篇--灵活的静态存储控制器FSMC

    源: STM32系列第15篇--灵活的静态存储控制器FSMC

  5. c# 类的序列化,以及嵌套问题

    简单的序列化,网上很多,但是突然想到一个问题,如果一个类里用到了另一个,那么怎么办,今天试了试,只需要加上序列号标签就可以了 using System.Collections; using Syste ...

  6. Linux下检测IP访问特定网站的ruby脚本

    root@ubuntu:~# vi check_ip.rbrequire 'rubygems' index = 1 max = 20 while (max-index) >= 0 puts in ...

  7. 操作文件和目录【TLCL】

    cp – Copy files and directories mv – Move/rename files and directories mkdir – Create directories rm ...

  8. ggplot笔记002——qplot()函数

    qplot()函数 一年前就听说过ggplot,很多人都说ggplot强大,ggplot无所不能,从今天开始就让我们一起来见证一下这个神奇的R包. 首先要加载ggplot2: 1 if(!suppre ...

  9. mysqldump 用法汇总

    mysql mysqldump 只导出表结构 不导出数据 复制代码代码如下: mysqldump --opt -d 数据库名 -u root -p > xxx.sql  备份数据库  复制代码代 ...

  10. BZOJ 4066 kd-tree 矩形询问求和

    第一次遇见强制在线的题目 每个操作都和前面的ans有关 所以不能直接离线做 在这个问题中 kdtree更像一个线段树在一维单点修改区间询问的拓展一样 如果区间被询问区间完全包含 就不用继续递归 插入时 ...