1. 非阻塞并发模型

直接将socket设置为非阻塞, 轮询处理连接和接收。

缺点: 极大消耗CPU资源,不适合实际应用。

2. 信号驱动模型

当Socket文件描述符准备就绪后 内核会给进程发送一个 SIGIO 或 SIGPOLL信号,signal(SIGIO, fun);

实际中 并不只有套接字有输入时才会发出这些信号, 实际情况中并不能用。

3. 超时并发模型

A: 通过套接字选项设置超时

通过套接字选项SO_SNDTIMEO 和 SO_RCVTIMEO设置读写超时,但是只能设置读写超时,不能设置connect 和 accept 等连接超时,并且有的系统不支持。

B: 通过信号SIGALRM 设置超时

#include <comlib.h>
static int nTimeOut = 0;
void OnTimeout(int nSignal)
{
signal(nSignal, SIG_IGN);
nTimeOut = 1;
return;
} int main(int argc, char *argv[])
{
int nSock = -1, ret;
if (argc != 3) return 1;
nTimeOut = 0;
signal(SIGALRM, OnTimeout);
alarm(10);
ret = ConnectSock(&nSock, atoi(argv[2]), argv[1]);
alarm(0);
signal(SIGALRM, SIG_IGN); if (nTimeOut == 1) printf("Connect Timeout.\n");
else if (ret == 0) printf("Connect Success.\n");
else printf("Connect Error!\n");
if (nSock != -1) close(nSock);
return 0;
}

C: 通过信号SIGALRM 与 跳转设置超时

#include <comlib.h>
#include <setjmp.h>
static int nTimeOut = 0;
jmp_buf env;
void OnTimeout(int nSignal)
{
signal(nSignal, SIG_IGN);
nTimeOut = 1;
longjmp(env, 1);
return;
} int main(int argc, char *argv[])
{
int nSock = -1, ret;
if (argc != 3) return 1;
nTimeOut = 0;
setjmp(env);
if (nTimeOut == 1) printf("Connect Timeout.\n");
else
{
signal(SIGALRM, OnTimeout);
alarm(10);
ret = ConnectSock(&nSock, atoi(argv[2]), argv[1]);
alarm(0);
signal(SIGALRM, SIG_IGN);
if (ret == 0) printf("Connect Success.\n");
else printf("Connect Error!\n");
}
if (nSock != -1) close(nSock);
return 0;
}

4. 多路复用并发模型

5. 多进程并发模型

A: 不固定进程数的并发模型

比如父进程只执行函数accept等待并完成客户端连接申请,子进程执行函数recv等待客户端的信息发送。

缺陷: 客户端无限申请,服务器比爆。

B: 固定进程数的并发模型

服务器父进程在创建监听套接字(listen)后fork子进程, 由子进程等待客户端connect并 完成与客户端的通信交换等工作,父进程之后的功能只是维持子进程的数目不变。

#include<iostream>
#include<string.h>
#include<sys/types.h>
#include<sys/socket.h>
#include<netinet/in.h>
#include<assert.h>
#include<errno.h>
#include<stdio.h>
#include<arpa/inet.h>
#include<stdio.h>
#include<wait.h>
#include<stdlib.h>
#include<semaphore.h>
#include<sys/ipc.h> using namespace std; int CreateSock( int *pSock, int nPort, int nMax )
{
int ret, on;
struct sockaddr_in addrin;
struct sockaddr *paddr = (struct sockaddr *) &addrin;
assert(pSock != NULL && nPort >0 && nMax > 0);
memset(&addrin, 0, sizeof(addrin)); addrin.sin_family = AF_INET;
addrin.sin_addr.s_addr = htonl(INADDR_ANY);
addrin.sin_port = htons(nPort); assert((*pSock = socket(AF_INET, SOCK_STREAM, 0)) > 0);
on=1;
ret = setsockopt( *pSock, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on) );
if( (bind(*pSock, paddr, sizeof(addrin)))< 0 )
{
perror("bind");
//cout << "bind error" << endl;
return 1;
}
if( (listen(*pSock, nMax)) < 0 )
{
cout << "listen error" << endl;
return 1;
}
else
{
cout << "create cocket successfully" << endl;
return 0;
} return 1;
} int AcceptSock(int *pSock, int nSock)
{
struct sockaddr_in addrin;
socklen_t lSize;
assert( pSock!=NULL && nSock>0 );
while(1)
{
lSize = sizeof(addrin);
memset(&addrin, 0, sizeof(addrin));
if( (*pSock = accept(nSock, (struct sockaddr *)&addrin, &lSize)) > 0 )
return 0;
else if( errno == EINTR ) continue;
else assert(0);
}
} int ConnectSock(int *pSock, int nPort, char* pAddr)
{
struct sockaddr_in addrin;
long lAddr;
int nSock;
assert(pSock!=NULL && nPort>0 && pAddr!=NULL);
assert( (nSock = socket(AF_INET, SOCK_STREAM, 0)) > 0 );
memset(&addrin, 0, sizeof(addrin));
addrin.sin_family = AF_INET;
addrin.sin_addr.s_addr = inet_addr(pAddr);
addrin.sin_port = htons(nPort);
if( (connect(nSock, (struct sockaddr *)&addrin , sizeof(addrin))) == 0 )
{
*pSock = nSock;
return 0;
}
close(nSock);
return 1;
} int LocateRemoteAddr(int nSock, char *pAddr)
{
struct sockaddr_in addrin;
socklen_t lSize;
if( nSock<=0 && pAddr==NULL )
{
cout << "input error" << endl;
return 1;
}
memset(&addrin, 0, sizeof(addrin)); if( (getpeername(nSock, (struct sockaddr*)&addrin, &lSize)) == 0 )
{
strcpy(pAddr, inet_ntoa(addrin.sin_addr));
return 0;
}
else
{
cout << "getpeername error " << endl;
return 1;
}
return 1;
} int main()
{
cout << "tcp test!" << endl; int i, bShutdown = 0, MAXNUMBER = 3;
int nSock, nSock1, nLisSock;
char szAddr[30];
char buf[1024];
pid_t pid, nChild;
sem_t sem; //信号量 sem_init(&sem, 0, 1); //初始化信号量 CreateSock(&nLisSock, 8888, 9); for( i=0; i<MAXNUMBER; i++ )
{
nChild = fork();
if(nChild == 0) break;
} if( nChild > 0 ) //父进程
{
cout << "in parent process: " << getpid() << endl;
while( !bShutdown )
{
pid = wait(NULL); //父进程等待子进程结束,并补充子进程
if( pid < 0 )
{
perror("wait");
continue;
}
printf("catch a process %d end \n", pid);
nChild = fork();
if( nChild == 0 ) break;
}
exit(0);
}
else if( nChild == 0 ) //子进程
{
while(1)
{
//cout << "in Child process: " << getpid() << endl;
sem_wait(&sem); //信号量互斥
if( (AcceptSock(&nSock, nLisSock)) == 0 )
cout << "accept successfully" << endl;
memset(buf, 0, sizeof(buf));
recv(nSock, buf, sizeof(buf), 0);
cout << "in process: " << getpid() << " receive: " << buf << endl;
close(nSock);
sem_post(&sem);
}
} return 0;
} /*
int main()
{
cout << "tcp test!" << endl; int nSock, nSock1;
char szAddr[30];
char buf[1024]; CreateSock(&nSock, 8888, 9); if( (AcceptSock(&nSock1, nSock)) == 0 )
cout << "accept successfully" << endl; memset(buf, 0, sizeof(buf));
recv(nSock1, buf, sizeof(buf), 0);
cout << "receive: " << buf << endl; cout << "input a key, send: " << endl;
fgetc(stdin);
send(nSock1, "world", strlen("world"), 0);
cout << "send: " << "world" << endl; //LocateRemoteAddr(nSock1, szAddr);
//cout << "IP--->" << szAddr << endl; close(nSock);
close(nSock1); return 0;
}
*/

并发Socket程序设计的更多相关文章

  1. Linux下高并发socket链接数测试

    一.如何增大service进程的max open files ulimit -n 只能改小max open files,不能改大.需要按照以下步骤: 修改/etc/security/limits.co ...

  2. Linux下高并发socket最大连接数所受的各种限制(详解)

    1.修改用户进程可打开文件数限制 在Linux平台上,无论编写客户端程序还是服务端程序,在进行高并发TCP连接处理时,最高的并发数量都要受到系统对用户单一进程同时可打开文件数量的限制(这是因为系统为每 ...

  3. linux中高并发socket最大连接数的优化详解

    linux中高并发socket最大连接数的优化详解 https://m.jb51.net/article/106546.htm?from=singlemessage

  4. linux 高并发socket通信模型

    ------select 1 一个误区很多人认为它最大可以监听1024个,实际上却是文件描述符的值不能大于等于1024,所以除掉标准输入.输出.错误输出,一定少于1024个,如果在之前还打开了其他文件 ...

  5. [转载] Linux下高并发socket最大连接数所受的各种限制

    原文: http://mp.weixin.qq.com/s?__biz=MzAwNjMxNjQzNA==&mid=207772333&idx=1&sn=cfc8aadb422f ...

  6. Linux下高并发socket最大连接数所受的各种限制

    http://blog.csdn.net/guowake/article/details/6615728 1.修改用户进程可打开文件数限制 在Linux平台上,无论编写客户端程序还是服务端程序,在进行 ...

  7. 教你修改Linux下高并发socket最大连接数所受的各种限制

    1.修改用户进程可打开文件数限制 在Linux平台上,无论编写客户端程序还是服务端程序,在进行高并发TCP连接处理时,最高的并发数量都要受到系统对用户单一进程同时可打开 文件数量的限制(这是因为系统为 ...

  8. Linux下高并发socket最大连接数

    http://soft.chinabyte.com/os/285/12349285.shtml (转载时原文内容做个修改) 1.修改用户进程可打开文件数限制 在Linux平台上,无论编写客户端程序还是 ...

  9. Linux下高并发socket最大连接数各种限制的调优

    1.修改用户进程可打开文件数限制 在Linux平台上,无论编写客户端程序还是服务端程序,在进行高并发TCP连接处理时,最高的并发数量都要受到系统对用户单一进程同时可打开文件数量的限制(这是因为系统为每 ...

随机推荐

  1. SharePoint让所有用户访问站点

    SharePoint让所有用户访问站点,可用在用户组里面添加:NT AUTHORITY\authenticated users

  2. 《从零开始学Swift》学习笔记(Day 19)——函数参数传递

    原创文章,欢迎转载.转载请注明:关东升的博客   函数的语法格式如下: func 函数名(参数列表) -> 返回值类型 { 语句组 return 返回值 } 关键字是func. 多个参数列表之间 ...

  3. 1624 取余最长路(set)

    1624 取余最长路 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 佳佳有一个n*m的带权矩阵,她想从(1,1)出发走到(n,m)且只能往右往下移动,她能得到的娱 ...

  4. Python之可迭代对象、迭代器、生成器

    在使用Python的过程中,很容易混淆如下几个关联的概念: 1.容器(container) 2.可迭代对象(Iterable) 3.迭代器(Iterator) 4.生成器(generator) 5.生 ...

  5. CSS3选择器:nth-child与:nth-of-type区别

    一.:nth-child 1.1 说明 :nth-child(n)选择器匹配属于其父元素的第N个子元素,不论元素的类型.n可以是数字.关键词或公式. 注意:如果第N个子元素与选择的元素类型不同则样式无 ...

  6. Nuxt使用高德地图

    事先准备 注册账号并申请Key 1. 首先,注册开发者账号,成为高德开放平台开发者 2. 登陆之后,在进入「应用管理」 页面「创建新应用」 3. 为应用添加 Key,「服务平台」一项请选择「 Web ...

  7. django实现密码加密的注册(数据对象插入)

    在 django实现密码非加密的注册(数据对象插入)的基础上,我们对视图和注册页面进行了简单修改 视图 from django.shortcuts import render,redirect,ren ...

  8. Python操作Redis(二)

    List操作 redis中的List在在内存中按照一个name对应一个List来存储.如图: lpush(name,values) # 在name对应的list中添加元素,每个新的元素都添加到列表的最 ...

  9. 关于handler内存泄露的问题

    在使用Handler更新UI的时候.我是这样写的: public class SampleActivity extends Activity { private final Handler mLeak ...

  10. ubuntu常见错误--Could not get lock /var/lib/dpkg/lock解决(转)

    通过终端安装程序sudo apt-get install xxx时出错: E: Could not get lock /var/lib/dpkg/lock - open (11: Resource t ...