并发Socket程序设计
1. 非阻塞并发模型
直接将socket设置为非阻塞, 轮询处理连接和接收。
缺点: 极大消耗CPU资源,不适合实际应用。
2. 信号驱动模型
当Socket文件描述符准备就绪后 内核会给进程发送一个 SIGIO 或 SIGPOLL信号,signal(SIGIO, fun);
实际中 并不只有套接字有输入时才会发出这些信号, 实际情况中并不能用。
3. 超时并发模型
A: 通过套接字选项设置超时
通过套接字选项SO_SNDTIMEO 和 SO_RCVTIMEO设置读写超时,但是只能设置读写超时,不能设置connect 和 accept 等连接超时,并且有的系统不支持。
B: 通过信号SIGALRM 设置超时
#include <comlib.h>
static int nTimeOut = 0;
void OnTimeout(int nSignal)
{
signal(nSignal, SIG_IGN);
nTimeOut = 1;
return;
} int main(int argc, char *argv[])
{
int nSock = -1, ret;
if (argc != 3) return 1;
nTimeOut = 0;
signal(SIGALRM, OnTimeout);
alarm(10);
ret = ConnectSock(&nSock, atoi(argv[2]), argv[1]);
alarm(0);
signal(SIGALRM, SIG_IGN); if (nTimeOut == 1) printf("Connect Timeout.\n");
else if (ret == 0) printf("Connect Success.\n");
else printf("Connect Error!\n");
if (nSock != -1) close(nSock);
return 0;
}
C: 通过信号SIGALRM 与 跳转设置超时
#include <comlib.h>
#include <setjmp.h>
static int nTimeOut = 0;
jmp_buf env;
void OnTimeout(int nSignal)
{
signal(nSignal, SIG_IGN);
nTimeOut = 1;
longjmp(env, 1);
return;
} int main(int argc, char *argv[])
{
int nSock = -1, ret;
if (argc != 3) return 1;
nTimeOut = 0;
setjmp(env);
if (nTimeOut == 1) printf("Connect Timeout.\n");
else
{
signal(SIGALRM, OnTimeout);
alarm(10);
ret = ConnectSock(&nSock, atoi(argv[2]), argv[1]);
alarm(0);
signal(SIGALRM, SIG_IGN);
if (ret == 0) printf("Connect Success.\n");
else printf("Connect Error!\n");
}
if (nSock != -1) close(nSock);
return 0;
}
4. 多路复用并发模型
5. 多进程并发模型
A: 不固定进程数的并发模型
比如父进程只执行函数accept等待并完成客户端连接申请,子进程执行函数recv等待客户端的信息发送。
缺陷: 客户端无限申请,服务器比爆。
B: 固定进程数的并发模型
服务器父进程在创建监听套接字(listen)后fork子进程, 由子进程等待客户端connect并 完成与客户端的通信交换等工作,父进程之后的功能只是维持子进程的数目不变。
#include<iostream>
#include<string.h>
#include<sys/types.h>
#include<sys/socket.h>
#include<netinet/in.h>
#include<assert.h>
#include<errno.h>
#include<stdio.h>
#include<arpa/inet.h>
#include<stdio.h>
#include<wait.h>
#include<stdlib.h>
#include<semaphore.h>
#include<sys/ipc.h> using namespace std; int CreateSock( int *pSock, int nPort, int nMax )
{
int ret, on;
struct sockaddr_in addrin;
struct sockaddr *paddr = (struct sockaddr *) &addrin;
assert(pSock != NULL && nPort >0 && nMax > 0);
memset(&addrin, 0, sizeof(addrin)); addrin.sin_family = AF_INET;
addrin.sin_addr.s_addr = htonl(INADDR_ANY);
addrin.sin_port = htons(nPort); assert((*pSock = socket(AF_INET, SOCK_STREAM, 0)) > 0);
on=1;
ret = setsockopt( *pSock, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on) );
if( (bind(*pSock, paddr, sizeof(addrin)))< 0 )
{
perror("bind");
//cout << "bind error" << endl;
return 1;
}
if( (listen(*pSock, nMax)) < 0 )
{
cout << "listen error" << endl;
return 1;
}
else
{
cout << "create cocket successfully" << endl;
return 0;
} return 1;
} int AcceptSock(int *pSock, int nSock)
{
struct sockaddr_in addrin;
socklen_t lSize;
assert( pSock!=NULL && nSock>0 );
while(1)
{
lSize = sizeof(addrin);
memset(&addrin, 0, sizeof(addrin));
if( (*pSock = accept(nSock, (struct sockaddr *)&addrin, &lSize)) > 0 )
return 0;
else if( errno == EINTR ) continue;
else assert(0);
}
} int ConnectSock(int *pSock, int nPort, char* pAddr)
{
struct sockaddr_in addrin;
long lAddr;
int nSock;
assert(pSock!=NULL && nPort>0 && pAddr!=NULL);
assert( (nSock = socket(AF_INET, SOCK_STREAM, 0)) > 0 );
memset(&addrin, 0, sizeof(addrin));
addrin.sin_family = AF_INET;
addrin.sin_addr.s_addr = inet_addr(pAddr);
addrin.sin_port = htons(nPort);
if( (connect(nSock, (struct sockaddr *)&addrin , sizeof(addrin))) == 0 )
{
*pSock = nSock;
return 0;
}
close(nSock);
return 1;
} int LocateRemoteAddr(int nSock, char *pAddr)
{
struct sockaddr_in addrin;
socklen_t lSize;
if( nSock<=0 && pAddr==NULL )
{
cout << "input error" << endl;
return 1;
}
memset(&addrin, 0, sizeof(addrin)); if( (getpeername(nSock, (struct sockaddr*)&addrin, &lSize)) == 0 )
{
strcpy(pAddr, inet_ntoa(addrin.sin_addr));
return 0;
}
else
{
cout << "getpeername error " << endl;
return 1;
}
return 1;
} int main()
{
cout << "tcp test!" << endl; int i, bShutdown = 0, MAXNUMBER = 3;
int nSock, nSock1, nLisSock;
char szAddr[30];
char buf[1024];
pid_t pid, nChild;
sem_t sem; //信号量 sem_init(&sem, 0, 1); //初始化信号量 CreateSock(&nLisSock, 8888, 9); for( i=0; i<MAXNUMBER; i++ )
{
nChild = fork();
if(nChild == 0) break;
} if( nChild > 0 ) //父进程
{
cout << "in parent process: " << getpid() << endl;
while( !bShutdown )
{
pid = wait(NULL); //父进程等待子进程结束,并补充子进程
if( pid < 0 )
{
perror("wait");
continue;
}
printf("catch a process %d end \n", pid);
nChild = fork();
if( nChild == 0 ) break;
}
exit(0);
}
else if( nChild == 0 ) //子进程
{
while(1)
{
//cout << "in Child process: " << getpid() << endl;
sem_wait(&sem); //信号量互斥
if( (AcceptSock(&nSock, nLisSock)) == 0 )
cout << "accept successfully" << endl;
memset(buf, 0, sizeof(buf));
recv(nSock, buf, sizeof(buf), 0);
cout << "in process: " << getpid() << " receive: " << buf << endl;
close(nSock);
sem_post(&sem);
}
} return 0;
} /*
int main()
{
cout << "tcp test!" << endl; int nSock, nSock1;
char szAddr[30];
char buf[1024]; CreateSock(&nSock, 8888, 9); if( (AcceptSock(&nSock1, nSock)) == 0 )
cout << "accept successfully" << endl; memset(buf, 0, sizeof(buf));
recv(nSock1, buf, sizeof(buf), 0);
cout << "receive: " << buf << endl; cout << "input a key, send: " << endl;
fgetc(stdin);
send(nSock1, "world", strlen("world"), 0);
cout << "send: " << "world" << endl; //LocateRemoteAddr(nSock1, szAddr);
//cout << "IP--->" << szAddr << endl; close(nSock);
close(nSock1); return 0;
}
*/
并发Socket程序设计的更多相关文章
- Linux下高并发socket链接数测试
一.如何增大service进程的max open files ulimit -n 只能改小max open files,不能改大.需要按照以下步骤: 修改/etc/security/limits.co ...
- Linux下高并发socket最大连接数所受的各种限制(详解)
1.修改用户进程可打开文件数限制 在Linux平台上,无论编写客户端程序还是服务端程序,在进行高并发TCP连接处理时,最高的并发数量都要受到系统对用户单一进程同时可打开文件数量的限制(这是因为系统为每 ...
- linux中高并发socket最大连接数的优化详解
linux中高并发socket最大连接数的优化详解 https://m.jb51.net/article/106546.htm?from=singlemessage
- linux 高并发socket通信模型
------select 1 一个误区很多人认为它最大可以监听1024个,实际上却是文件描述符的值不能大于等于1024,所以除掉标准输入.输出.错误输出,一定少于1024个,如果在之前还打开了其他文件 ...
- [转载] Linux下高并发socket最大连接数所受的各种限制
原文: http://mp.weixin.qq.com/s?__biz=MzAwNjMxNjQzNA==&mid=207772333&idx=1&sn=cfc8aadb422f ...
- Linux下高并发socket最大连接数所受的各种限制
http://blog.csdn.net/guowake/article/details/6615728 1.修改用户进程可打开文件数限制 在Linux平台上,无论编写客户端程序还是服务端程序,在进行 ...
- 教你修改Linux下高并发socket最大连接数所受的各种限制
1.修改用户进程可打开文件数限制 在Linux平台上,无论编写客户端程序还是服务端程序,在进行高并发TCP连接处理时,最高的并发数量都要受到系统对用户单一进程同时可打开 文件数量的限制(这是因为系统为 ...
- Linux下高并发socket最大连接数
http://soft.chinabyte.com/os/285/12349285.shtml (转载时原文内容做个修改) 1.修改用户进程可打开文件数限制 在Linux平台上,无论编写客户端程序还是 ...
- Linux下高并发socket最大连接数各种限制的调优
1.修改用户进程可打开文件数限制 在Linux平台上,无论编写客户端程序还是服务端程序,在进行高并发TCP连接处理时,最高的并发数量都要受到系统对用户单一进程同时可打开文件数量的限制(这是因为系统为每 ...
随机推荐
- 项目中lua(基础)
关于项目中lua任务(某些没弄懂,但lua上耗费时间有点长了不看了) 这段时间看了lua语法和项目中lua应用 .在lua中注册c库,在lua5.2中好像都是注册c库,相当于在lua中定义一个tabl ...
- 初探webpack之环境配置
先感叹一句,前端的发展真是太快了,ng和bb还没怎么学好就要过时了.现在感觉react当是未来的一个大方向. 以前一直用的grunt,不过前段时间作者已经停止更新了.正好webpack风头正盛,咱也不 ...
- 【BZOJ4771】七彩树 主席树+树链的并
[BZOJ4771]七彩树 Description 给定一棵n个点的有根树,编号依次为1到n,其中1号点是根节点.每个节点都被染上了某一种颜色,其中第i个节点的颜色为c[i].如果c[i]=c[j], ...
- 《从零开始学Swift》学习笔记(Day 39)——构造函数重载
原创文章,欢迎转载.转载请注明:关东升的博客 构造函数作为一种特殊方法,也可以重载. Swift中构造函数可以多个,他们参数列表和返回值可以不同,这些构造函数构成重载. 示例代码如下: class ...
- SQLServer与ASP中DATEDIFF函数区别
一.SQLServer: 格式: DATEDIFF(interval,startdate,enddate) interval参数: 年-yy,yyyy 季度-qq,q 月-mm,m 年中的日-dy,y ...
- SpringBoot + Thymeleaf + Validate验证
在开发业务时,不可避免的需要处理一些校验, 如果是写 if-else 这种代码去校验, 那会有一大段这样的代码.不过还好有个校验插件: javax.validation.validation-api ...
- Scilab 的画图函数(2)
一幅图是由很多元素组成的. 包含图标题.x轴标签.y轴标签,刻度线等.图1给出了各个元素的一个示意图. 这些全部的元素在scilab中都是能够用代码控制的. 标题 上个笔记上介绍了用xtitle()函 ...
- android自定义View (五)view.requestLayout() 与 invalidate()
一.要点 If in the course of processing the event, the view's bounds may need to be changed, the view wi ...
- 转载:http://blog.csdn.net/foruok/article/details/53500801
凭兴趣求职80%会失败,为什么 标签: 求职跳槽找工作兴趣技术 2016-12-07 06:51 43316人阅读 评论(69) 收藏 举报 本文章已收录于: 分类: 随笔(144) 作者同类文章 ...
- EM算法(expectation maximization)
EM算法简述 EM算法是一种迭代算法,主要用于含有隐变量的概率模型参数的极大似然估计,或极大后验概率估计.EM算法的每次迭代由两步完成: E步,求期望 M步,求极大. EM算法的引入 如果概率模型的变 ...