【CodeForces】841D. Leha and another game about graph(Codeforces Round #429 (Div. 2))
【题意】给定n个点和m条无向边(有重边无自环),每个点有权值di=-1,0,1,要求仅保留一些边使得所有点i满足:di=-1或degree%2=di,输出任意方案。
【算法】数学+搜索
【题解】
最关键的一步:★【%2转取反】。
首先考虑在树上做这样的问题,就显得十分朴素了。每当选择一条边,边的两端点权值就会取反,所以做一次DFS,对儿子权值(变化后)为1的点连边,自身取反,儿子都处理完毕后再把自身的新权值反馈上去。这样本质上等同于,所有点权为1的点都通过路径将取反信息传递到根,若最终根权为0则问题解决且得到一种路径方案,若根权为1则需要换一个di=-1的点作为根重新dfs,若无则无解。(实际操作中直接先找-1的点DFS,没有再找任意一个判断有无解)
最后考虑图转树的正确性,需要论证一下两点:
1.图上的环没有影响:对于一个环,环边对环中所有点的度均为2,此时可以一起删去则模2不受影响。
2.图转成任意生成树没有影响:因为转成树后不管树长成什么样,都是所有的di=1的点在传递信息,简单的说,答案有解当且仅当【di=1的点为偶数个】或【di=1的点为奇数个且存在di=-1的点】,所以生成树的形态只是为了找到一个可行方案来输出,不会影响答案。
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=;
struct edge{int v,from;}e[maxn*];
int first[maxn],d[maxn],n,m,ans=,tot=;
bool vis[maxn],a[maxn*]; void insert(int u,int v){
tot++;e[tot].v=v;e[tot].from=first[u];first[u]=tot;
tot++;e[tot].v=u;e[tot].from=first[v];first[v]=tot;
}
int dfs(int x){
vis[x]=;
for(int i=first[x];i;i=e[i].from)if(!vis[e[i].v]){
if(dfs(e[i].v)&){
a[i]=;ans++;
if(d[x]!=)d[x]=-d[x];
}
}
return d[x];
}
int main(){
scanf("%d%d",&n,&m);
int point=;
for(int i=;i<=n;i++){scanf("%d",&d[i]);if(d[i]==-)point=i,d[i]=;}
int u,v;
for(int i=;i<=m;i++){
scanf("%d%d",&u,&v);
insert(u,v);
}
if(point)dfs(point);
else if(dfs()&){printf("-1");return ;}
printf("%d\n",ans);
for(int i=;i<=tot;i+=)if(a[i]||a[i+])printf("%d ",(i+)/);
return ;
}
【CodeForces】841D. Leha and another game about graph(Codeforces Round #429 (Div. 2))的更多相关文章
- 【CodeForces】841C. Leha and Function(Codeforces Round #429 (Div. 2))
[题意]定义函数F(n,k)为1~n的集合中选择k个数字,其中最小数字的期望. 给定两个数字集A,B,A中任意数字>=B中任意数字,要求重组A使得对于i=1~n,sigma(F(Ai,Bi))最 ...
- 【动态规划】Vijos P1313 金明的预算方案(NOIP2006提高组第二题)
题目链接: https://vijos.org/p/1313 题目大意: m(m<=32000)金钱,n(n<=60)个物品,花费vi,价值vi*ci,每个物品可能有不超过2个附件,附件没 ...
- 【转载】一分钟了解两阶段提交2PC(运营MM也懂了)
上一期分享了"一分钟了解mongoDB"[回复"mongo"阅读],本期将分享分布式事务的一种实现方式2PC. 一.概念 二阶段提交2PC(Two phase ...
- (原创)【MAUI】一步一步实现“悬浮操作按钮”(FAB,Floating Action Button)
一.前言 MAUI,跨平台的 GUI 框架,基本介绍本文不再赘述. 话不多说,既然可以跨平台,那么我们就来实现一个在移动端很常用的控件:悬浮操作按钮(FAB,Floating Action Butto ...
- 【BZOJ-2502】清理雪道 有上下界的网络流(有下界的最小流)
2502: 清理雪道 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 594 Solved: 318[Submit][Status][Discuss] ...
- 【转】浅谈Java中的hashcode方法(这个demo可以多看看)
浅谈Java中的hashcode方法 哈希表这个数据结构想必大多数人都不陌生,而且在很多地方都会利用到hash表来提高查找效率.在Java的Object类中有一个方法: public native i ...
- 【HTML5】HTML5中video元素事件详解(实时监测当前播放时间)
html 代码..video后边几个元素,可处理ios 系统的兼容性 <video id="myVideo" controls="controls" po ...
- 【PHP】php生成一个不重复的数字(订单号、会员号)
1.目的:利用php的do .. while 生成一个不重复的字符串或者数组,比如(订单号.会员号) 2.不废话,代码来: $repeat_order = array(); do{ $ordersn ...
- 【jQuery】学习jQuery插件的使用与写法(表单验证插件-validation)
最新最全的插件可以从jQuery官方网站的插件板块下载,网站地址为:http://plugins.jquery.com/ Validation优点:内置验证规则:自定义验证规则:简单强大的验证信息提示 ...
随机推荐
- SpringBoot学习:使用logback进行日志记录
项目下载地址:http://download.csdn.NET/detail/aqsunkai/9805821 (一)pom.xml文件中引入jar: <!-- https://mvnrepos ...
- jmeter动态获取jsessionid
思想是在一个线程组内添加一个cookie管理器,登录之后,用正则提取到sessionid,该线程组下的操作便可以共享这个session了. 1. 依次新建线程组.cookie管理器.http请求-登录 ...
- Ubuntu 安装Qt
下载Qt,这里步骤略过 设置共享, 如果设置共享没有问题,可以不看下面的 如果设置共享,在Ubuntu中找不到共享文件的话,那安找下面的步骤在来一次. http://blog.csdn.net/z60 ...
- 接口测试工具postman(三)添加断言
每个用例执行完成后,可以通过添加断言来判断返回结果是否正确,即表示用例执行是否成功. 官方说明文档:https://learning.getpostman.com/docs/postman/scrip ...
- iOS-Hello World
尝试练习一些简单的app,能快速上手开发环境和开发流程.基础Start Developing iOS Apps (Swift)https://developer.apple.com/library/c ...
- PAT——乙级1006:换个格式输出整数&乙级1021:个位数统计&乙级1031:查验身份证
1006 换个格式输出整数 (15 point(s)) 让我们用字母 B 来表示“百”.字母 S 表示“十”,用 12...n 来表示不为零的个位数字 n(<10),换个格式来输出任一个不超过 ...
- Spring Data学习(一):初识
目录 前言 添加Spring Data 配置pom.xml 配置数据库相关信息(application.properties) 配置数据库信息 配置自动根据实体类在数据库创建表 创建User.java ...
- 【Linux】Linux修改openfiles后不生效问题?
#次故障问题环境背景: Centos7.4物理机,升级过ssh和ntp: #一般只需要在此文件后面添加4行就行,配置后即可生效(exit再次登录即可生效),此次配置后没生效,reboot还是没生效,在 ...
- Web-request内置对象在JSP编程中的应用
- exit和die的区别
网上搜索die与exit两个函数的区别,大部分的"标准答案"都是说die是退出并释放内存,exit是退出但不释放内存. 这个解释显然是错的,PHP手册中已经说过"die ...