Hadoop Serialization -- hadoop序列化详解 (3)【ObjectWritable,集合Writable以及自定义的Writable】
回顾:
woDArrayWritable 的使用都必须实例化相同的类,这是在构造时指定的,如下所示:
ArrayWritable 足够了,但是存储不间的类型在一个单列表中,可以使用GenericWritable 封装到ArrayWritable 中。同时,也可以用MapWritable 的思路写一个通用的ListWritable。
Writable 应用已得到很好的优化,但为了对付更复杂的结构, 最好创建一个新的Writable 类型,而不是使用已有的类型。为了横示如何创建一个自定义的Writable ,我们编写了一个表示一对字符串的实现,名为TextPair:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
|
// cc TextPair A Writable implementation that stores a pair of Text objects// cc TextPairComparator A RawComparator for comparing TextPair byte representations// cc TextPairFirstComparator A custom RawComparator for comparing the first field of TextPair byte representations// vv TextPairimport java.io.*;import org.apache.hadoop.io.*;public class TextPair implements WritableComparable<TextPair> { private Text first; private Text second; //* 必须有默认的构造器皿,这样Mapreduce方法才能创建对象,然后通过readFields方法从序列化的数据流中读出进行赋值 public TextPair() { set(new Text(), new Text()); } public TextPair(String first, String second) { set(new Text(first), new Text(second)); } public TextPair(Text first, Text second) { set(first, second); } public void set(Text first, Text second) { this.first = first; this.second = second; } public Text getFirst() { return first; } public Text getSecond() { return second; }/** @Override public void write(DataOutput out) throws IOException { first.write(out); second.write(out); } //同上调用成员对象本身的readFields方法,从输入流中反序列化每一个成员对象
@Override public void readFields(DataInput in) throws IOException { first.readFields(in); second.readFields(in); } /*MapReduce需要一个分割者(Partitioner)把map的输出作为输入分成一块块的喂给多个reduce)
* 默认的是HashPatitioner,他是通过对象的hashcode函数进行分割,所以hashCode的好坏决定 * 了分割是否均匀,他是一个很关键性的方法。 /
@Override public int hashCode() { return first.hashCode() * 163 + second.hashCode(); } @Override public boolean equals(Object o) { if (o instanceof TextPair) { TextPair tp = (TextPair) o; return first.equals(tp.first) && second.equals(tp.second); } return false; } //* 如果你想自定义TextOutputformat作为输出格式时的输出,你需要重写toString方法
@Override public String toString() { return first + "\t" + second; } // * implements WritableComparable必须要实现的方法,用于比较 排序 @Override public int compareTo(TextPair tp) { int cmp = first.compareTo(tp.first); if (cmp != 0) { return cmp; } return second.compareTo(tp.second); } } |
是易变的、经常重用的,所以我们应该尽量避免在write() 或readFields ()方法中分配对象。
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
public static class Comparator extends WritableComparator {private static final Text.Comparator TEXT_COMPARATOR = new Text.Comparator();public Comparator() { super(TextPair.class);}@Overridepublic int compare(byte[] b1, int s1, int l1,byte[] b2, int s2, int l2) {try { /**
* Text是标准的UTF-8字节流,
* 由一个变长整形开头表示Text中文本所需要的长度,接下来就是文本本身的字节数组
* decodeVIntSize返回变长 整形的长度,readVInt 表示 文本字节数组的长度,加起来就是第一个成员first的长度
*/
int firstL1 = WritableUtils.decodeVIntSize(b1[s1]) + readVInt(b1, s1);int firstL2 = WritableUtils.decodeVIntSize(b2[s2]) + readVInt(b2, s2);int cmp = TEXT_COMPARATOR.compare(b1, s1, firstL1, b2, s2, firstL2);//首先比较first if (cmp != 0) { return cmp; }//如果first一样,那就比较second second的位置要在s1的位置上加firstL1,长度要总长度减去第一个first的长度
return TEXT_COMPARATOR.compare(b1, s1 + firstL1, l1 - firstL1, b2, s2 + firstL2, l2 - firstL2);} catch (IOException e) { throw new IllegalArgumentException(e);}}}static { WritableComparator.define(TextPair.class, new Comparator());//定义我们compare用哪个} |
画了一个简图帮助大家理解:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
// cc TextPair A Writable implementation that stores a pair of Text objects// cc TextPairComparator A RawComparator for comparing TextPair byte representations// cc TextPairFirstComparator A custom RawComparator for comparing the first field of TextPair byte representations// vv TextPairimport java.io.*;import org.apache.hadoop.io.*;public class TextPair implements WritableComparable<TextPair> { private Text first; private Text second; //* 必须有默认的构造器皿,这样Mapreduce方法才能创建对象,然后通过readFields方法从序列化的数据流中读出进行赋值 public TextPair() { set(new Text(), new Text()); } public TextPair(String first, String second) { set(new Text(first), new Text(second)); } public TextPair(Text first, Text second) { set(first, second); } public void set(Text first, Text second) { this.first = first; this.second = second; } public Text getFirst() { return first; } public Text getSecond() { return second; }/** * 通过成员对象本身的write方法,序列化每一个成员对象到输出流中 @Override public void write(DataOutput out) throws IOException { first.write(out); second.write(out); } //同上调用成员对象本身的readFields方法,从输入流中反序列化每一个成员对象
@Override public void readFields(DataInput in) throws IOException { first.readFields(in); second.readFields(in); } /*MapReduce需要一个分割者(Partitioner)把map的输出作为输入分成一块块的喂给多个reduce)
* 默认的是HashPatitioner,他是通过对象的hashcode函数进行分割,所以hashCode的好坏决定 * 了分割是否均匀,他是一个很关键性的方法。 /
@Override public int hashCode() { return first.hashCode() * 163 + second.hashCode(); } @Override public boolean equals(Object o) { if (o instanceof TextPair) { TextPair tp = (TextPair) o; return first.equals(tp.first) && second.equals(tp.second); } return false; } //* 如果你想自定义TextOutputformat作为输出格式时的输出,你需要重写toString方法
@Override public String toString() { return first + "\t" + second; } // * implements WritableComparable必须要实现的方法,用于比较 排序 @Override public int compareTo(TextPair tp) { int cmp = first.compareTo(tp.first); if (cmp != 0) { return cmp; } return second.compareTo(tp.second); } // ^^ TextPair // vv TextPairComparator public static class Comparator extends WritableComparator { private static final Text.Comparator TEXT_COMPARATOR = new Text.Comparator(); public Comparator() { super(TextPair.class); } @Override public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) { try { int firstL1 = WritableUtils.decodeVIntSize(b1[s1]) + readVInt(b1, s1); int firstL2 = WritableUtils.decodeVIntSize(b2[s2]) + readVInt(b2, s2); int cmp = TEXT_COMPARATOR.compare(b1, s1, firstL1, b2, s2, firstL2); if (cmp != 0) { return cmp; } return TEXT_COMPARATOR.compare(b1, s1 + firstL1, l1 - firstL1, b2, s2 + firstL2, l2 - firstL2); } catch (IOException e) { throw new IllegalArgumentException(e); } } } static { WritableComparator.define(TextPair.class, new Comparator());//注册WritableComparator } // ^^ TextPairComparator // vv TextPairFirstComparator自定义实现的comparator public static class FirstComparator extends WritableComparator { private static final Text.Comparator TEXT_COMPARATOR = new Text.Comparator(); public FirstComparator() { super(TextPair.class); } @Override public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) { try { int firstL1 = WritableUtils.decodeVIntSize(b1[s1]) + readVInt(b1, s1); int firstL2 = WritableUtils.decodeVIntSize(b2[s2]) + readVInt(b2, s2); return TEXT_COMPARATOR.compare(b1, s1, firstL1, b2, s2, firstL2); } catch (IOException e) { throw new IllegalArgumentException(e); } } @Override public int compare(WritableComparable a, WritableComparable b) { if (a instanceof TextPair && b instanceof TextPair) { return ((TextPair) a).first.compareTo(((TextPair) b).first); } return super.compare(a, b); } } // ^^ TextPairFirstComparator // vv TextPair}// ^^ TextPair |
Hadoop Serialization -- hadoop序列化详解 (3)【ObjectWritable,集合Writable以及自定义的Writable】的更多相关文章
- hadoop应用开发技术详解
<大 数据技术丛书:Hadoop应用开发技术详解>共12章.第1-2章详细地介绍了Hadoop的生态系统.关键技术以及安装和配置:第3章是 MapReduce的使用入门,让读者了解整个开发 ...
- 《Hadoop应用开发技术详解》
<Hadoop应用开发技术详解> 基本信息 作者: 刘刚 丛书名: 大数据技术丛书 出版社:机械工业出版社 ISBN:9787111452447 上架时间:2014-1-10 出版日期:2 ...
- Hadoop Hive sql语法详解
Hadoop Hive sql语法详解 Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构 化的数据文件 ...
- Hadoop生态圈-Kafka配置文件详解
Hadoop生态圈-Kafka配置文件详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.默认kafka配置文件内容([yinzhengjie@s101 ~]$ more /s ...
- Hadoop基础-Idea打包详解之手动添加依赖(SequenceFile的压缩编解码器案例)
Hadoop基础-Idea打包详解之手动添加依赖(SequenceFile的压缩编解码器案例) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.编辑配置文件(pml.xml)(我 ...
- 详解如何在Laravel中增加自定义全局函数
http://www.php.cn/php-weizijiaocheng-383928.html 如何在Laravel中增加自定义全局函数?在我们的应用里经常会有一些全局都可能会用的函数,我们应该怎么 ...
- Hadoop MapReduce执行过程详解(带hadoop例子)
https://my.oschina.net/itblog/blog/275294 摘要: 本文通过一个例子,详细介绍Hadoop 的 MapReduce过程. 分析MapReduce执行过程 Map ...
- 【大数据】Linux下安装Hadoop(2.7.1)详解及WordCount运行
一.引言 在完成了Storm的环境配置之后,想着鼓捣一下Hadoop的安装,网上面的教程好多,但是没有一个特别切合的,所以在安装的过程中还是遇到了很多的麻烦,并且最后不断的查阅资料,终于解决了问题,感 ...
- hadoop之hdfs命令详解
本篇主要对hadoop命令和hdfs命令进行阐述,yarn命令会在之后的文章中体现 hadoop fs命令可以用于其他文件系统,不止是hdfs文件系统内,也就是说该命令的使用范围更广可以用于HDFS. ...
随机推荐
- Git和SVN之间的区别
如果你在读这篇文章,说明你跟大多数开发者一样对GIT感兴趣,如果你还没有机会来试一试GIT,我想现在你就要了解它了. GIT不仅仅是个版本控制系统,它也是个内容管理系统(CMS),工作管理系统等.如果 ...
- eclipse配置及常用快捷键
1. eclipse查看一个方法被谁引用(调用)的快捷键四种方式 1.(首推)双击选中该方法,Ctrl+Alt+H 如果你想知道一个类的方法到底被那些其他的类调用,那么请选中这个方法名,然后按“Ct ...
- 视图框架:Spring MVC 4.0(2)
在<springMVC4(7)模型视图方法源码综合分析>一文中,我们介绍了ModelAndView的用法,它会在控制层方法调用完毕后作为返回值返回,里面封装好了我们的业务逻辑数据和视图对象 ...
- JAVA并发全景图1.1版本
感谢微信群"Spring Boot那些事"兄弟们的热心整理和总结
- 21天学通C++_Day3_Part2
0.语句的分行 法1:在第一行末尾添加反斜杠 cout<<"Hello \ World!"<<endl; 法2:将字符串字面量分成两个,编译器注意到两个响铃 ...
- 理解SQL【转http://blog.jobbole.com/55086/】
很多程序员视 SQL 为洪水猛兽.SQL 是一种为数不多的声明性语言,它的运行方式完全不同于我们所熟知的命令行语言.面向对象的程序语言.甚至是函数语言(尽管有些人认为 SQL 语言也是一种函数式语言) ...
- fpga加法进位链实现过程中的一个特点
altera fpga 用quartus综合后会出现加法进位链一正一反的情况,所谓一正一反指的是假设某一级输入为a,b,进位值为c,则该级进位链逻辑应该为cout=ab+ac+bc,但实际为 cout ...
- 用hexo搭建自己的blog
一.工具准备: 1.1 安装node 作用:用来生成静态页面的 到Node.js官网下载相应平台的最新版本,一路安装即可. 1.2 安装Git 作用:把本地的hexo内容提交到github上去. 安装 ...
- [转]HTTP 协议中的 Transfer-Encoding
本文作为我的博客「HTTP 相关」专题新的一篇,主要讨论 HTTP 协议中的 Transfer-Encoding.这个专题我会根据自己的理解,以尽量通俗的讲述,结合代码示例和实际场景来说明问题,欢迎大 ...
- 在TreeView 控件上,如果双击任何一个节点的checkbox 只会收到一次After_Check事件 但是check属性变化两次(从false到true 再从true到false),请问该如何解决,谢谢!
在TreeView 控件上,如果双击任何一个节点的checkbox 只会收到一次After_Check事件 但是check属性变化两次(从false到true 再从true到false),请问该如何解 ...