HMM代码实现
按照网上的代码,自己敲了一下,改了一点点,理解加深了一下。
还有训练HMM的EM算法没看懂,下次接着看;
参考连接:http://www.cnblogs.com/hanahimi/p/4011765.html
# -*- coding: utf-8 -*- '''
function: 根据网上的代码,学习实现 HMM,前向计算概率,后向预测状态序列,学习算法参数
date: 2017.8.9
''' import numpy as np class HMM(object):
"""docstring Ann, Bnm, piln HMM"""
def __init__(self, Ann, Bnm, piln):
self.A = Ann
self.B = Bnm
self.pi = piln
self.N = self.A.shape[0] #状态的种类个数
self.M = self.B.shape[1] #观测序列的长度 #打印hmm的信息
def printHmm(self):
print("=======================================")
print('hmm content N = ', self.N, ' M = ', self.M)
for i in range(self.N):
if i == 0:
print('hmm.A ', self.A[i,:],'hmm.B', self.B[i,:])
else:
print(' ', self.A[i,:], ' ', self.B[i,:])
print('hmm.pi', self.pi)
print('========================================') '''
function: 维特比算法
input: A,B,pi,O
output: P(o|lambda) 最大的时候,状态的路径序列
'''
def viterbi(self, O):
T = len(O) #观察序列的长度 #初始化,这里从0~T-1
#delta t行 n列,代表有t个时间点,每个时间点可能有n种状态
delta = np.zeros((T, self.N), np.float) #二维数组记录计算的所有概率,包括了最有的点
phi = np.zeros((T, self.N), np.int) #记录概率最大路径的前一个状态
I = np.zeros(T, np.int) #这里如果不显示表明类型为 np.int,就是float?
for i in range(self.N):
delta[0,i] = self.pi[i] * self.B[i,O[0]] #t = 0时刻,各个状态的起始概率
phi[0,i] = 0 #t=0时刻前缀状态都是0 #递推
for t in range(1,T): #从 1 开始
for i in range(self.N):
delta[t,i] = self.B[i,O[t]] * np.array([delta[t-1,j]*self.A[j,i] \
for j in range(self.N)]).max()
phi[t,i] = np.array([delta[t-1, j]*self.A[j,i] for j in range(self.N)]).argmax()
#结束
prob = delta[T-1,:].max() #T-1时刻是最后时刻,哪个状态在最后时刻概率最大就是最优路径的起始点
I[T-1] = phi[T-1,:].argmax() #最优路径的起点状态编号
#状态序列获取
for t in range(T-2, -1, -1): #从 T-1 到 -1(不包括-1),间隔是-1,即递减
I[t] = phi[t+1, I[t+1]]
return I, prob '''
function: 前向算法计算擦观察序列 O 出现的概率
input: A,B,pi,O
output: prob
'''
def forward(self, O):
T = len(O)
alpha = np.zeros((T, self.N), np.float) #暂存计算的所有概率,按照时间点向前推进
#初始化
for i in range(self.N):
alpha[0,i] = self.pi[i] * self.B[i, O[0]] #迭代计算
for t in range(T-1):
for i in range(self.N): #这里B[i,O[t]]也可以放在for的外面乘
alpha[t+1,i] = np.array([alpha[t, j]*self.A[j,i]*self.B[i,O[t+1]] for \
j in range(self.N)]).sum() #终止
prob = np.array([alpha[T-1, j] for j in range(self.N)]).sum()
return prob '''
function: 后向算法,计算观测序列出现的概率 '''
def backword(self, O):
T = len(O)
beta = np.zeros((T, self.N), np.float) #暂存计算的概率 #初始化
for i in range(self.N):
beta[T-1, i] = 1 #从后向前
#迭代计算
for t in range(T-2, -1, -1):
for i in range(self.N):
beta[t,i] = np.array([[A[j,i] * B[j,O[t+1]] * beta[t+1,j]] for \
j in range(self.N)]).sum() prob = np.array([self.pi[j] * self.B[i,O[1]] * beta[1,j] for j in range(self.N)]).sum() return prob if __name__ == 'main': print('python my HMM') #HMM模型的参数
A = [[0.8125,0.1875],[0.2,0.8]]
B = [[0.875,0.125], [0.25,0.75]] #每一行的和是 1
pi = [0.5,0.5]
hmm = HMM(A,B,pi) #构建HMM print(hmm) print('python my HMM') #HMM模型的参数
A = np.mat([[0.8125,0.1875],[0.2,0.8]])
B = np.mat([[0.875,0.125], [0.25,0.75]]) #每一行的和是 1
pi = [0.5,0.5]
O = [[1,0,0,1,1,0,0,0,0],
[1,1,0,1,0,0,1,1,0],
[0,0,1,1,0,0,1,1,1]] hmm = HMM(A,B,pi) #构建HMM #计算前向概率,产生特定观测序列O的概率
prob = hmm.forward(O[0])
print('前向算法产生 O 序列的概率是: ' + str(prob)) #后向算法计算观测序列的概率
prob = hmm.backword(O[0])
print('后向算法概率是: ' + str(prob))
#计算隐含概率,维特比算法
path, prob2 = hmm.viterbi(O[0])
print('产生 O 序列最大概率路径是: ' + str(path))
print('概率是: ' + str(prob2)) hmm.printHmm()
HMM代码实现的更多相关文章
- HMM代码实践
本文主要转载于:http://www.52nlp.cn/hmm-learn-best-practices-eight-summary 这个文章是边看边实践加上自己的一些想法生成的初稿..... 状态转 ...
- Python实现HMM(隐马尔可夫模型)
1. 前言 隐马尔科夫HMM模型是一类重要的机器学习方法,其主要用于序列数据的分析,广泛应用于语音识别.文本翻译.序列预测.中文分词等多个领域.虽然近年来,由于RNN等深度学习方法的发展,HMM模型逐 ...
- 浅谈分词算法(4)基于字的分词方法(CRF)
目录 前言 目录 条件随机场(conditional random field CRF) 核心点 线性链条件随机场 简化形式 CRF分词 CRF VS HMM 代码实现 训练代码 实验结果 参考文献 ...
- 隐型马尔科夫模型(HMM)向前算法实例讲解(暴力求解+代码实现)---盒子模型
先来解释一下HMM的向前算法: 前向后向算法是前向算法和后向算法的统称,这两个算法都可以用来求HMM观测序列的概率.我们先来看看前向算法是如何求解这个问题的. 前向算法本质上属于动态规划的算法,也就是 ...
- 隐马尔科夫模型 介绍 HMM python代码
#HMM Forward algorithm #input Matrix A,B vector pi import numpy as np A=np.array([[0.5,0.2,0.3],[0.3 ...
- HMM 隐马尔科夫 Python 代码
import numpy as np # -*- codeing:utf-8 -*- __author__ = 'youfei' # 隐状态 hidden_state = ['sunny', 'rai ...
- 一文搞懂HMM(隐马尔可夫模型)
什么是熵(Entropy) 简单来说,熵是表示物质系统状态的一种度量,用它老表征系统的无序程度.熵越大,系统越无序,意味着系统结构和运动的不确定和无规则:反之,,熵越小,系统越有序,意味着具有确定和有 ...
- [综]隐马尔可夫模型Hidden Markov Model (HMM)
http://www.zhihu.com/question/20962240 Yang Eninala杜克大学 生物化学博士 线性代数 收录于 编辑推荐 •2216 人赞同 ×××××11月22日已更 ...
- [原创]java WEB学习笔记66:Struts2 学习之路--Struts的CRUD操作( 查看 / 删除/ 添加) 使用 paramsPrepareParamsStack 重构代码 ,PrepareInterceptor拦截器,paramsPrepareParamsStack 拦截器栈
本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱 ...
随机推荐
- python3----split and join
s = "I am fine" s = s.split(" ") print(s) print("%".join(s)) results: ...
- MySQL内连接查询
1.语法: select 字段列表 from table1,table2 where 子句: select 字段列表 from table1 as 别名1 inner join table2 as 别 ...
- JEECMS 2.4.2 之添加新的可扩展的ftl模版文件、自定义方法
Demo: <@cms.CfgList isPage='1' league='0' recommend='0' lala='0' hot='1' memberId='0' pageNo=page ...
- android Service 保持不被杀死
Android开发的过程中,每次调用startService(Intent)的时候,都会调用该Service对象的onStartCommand(Intent,int,int)方法,然后在onStart ...
- Python踩坑:类与类对象类型参数传递与使用
前言 对初学者来说,Python确实简单好用,毕竟动态类型语言,不用定义就可以拿来用,类型之间随意转换简直不要太方便,因此Python用来写写小脚本,爬虫程序什么的,没什么问题. 不过,一旦用来开发稍 ...
- Linux I/O 进阶
非阻塞I/O 阻塞I/O对应于低速的系统调用,可能会使进程永远阻塞.非阻塞I/O可以使我们发出open.read.write这样的I/O操作,并使这些操作不会永远阻塞.如果这种操作不能完成,则调用立即 ...
- 前端 为什么我选择用框架而不是Jquery
对于很多习惯用Jquery的前端甚至后端,都很不解,为什么不用Jquery而是框架.觉得框架学起来麻烦,成本高,今天我以我浅薄的知识来总结一下为什么前台开发选择用框架: 前台开发,主要的性能是卡在回流 ...
- eclipse远程debug Java程序
使用Eclipse JPDA远程调试Java程序 本文将介绍使用Eclipse JPDA,在Eclipse的开发环境下对远程运行的Java程序进行调试操作. 请按以下步骤进行(本人已经在Eclipse ...
- Beanutils-No origin bean specified问题分析
copyProperties 时候系统中报错了,呵呵,源码已经说明了一切,就不BB了
- TFS二次开发-基线文件管理器(2)-TFS登录
首先需要做一个TFS的登录. 以前的文章是使用的DomainProjectPicker 最新的VS里面使用的是TeamProjectPicker 首先可以在WinForm程序上写一个Button,然后 ...