【题解】HNOI2018寻宝游戏
太厉害啦……感觉看到了正解之后整个人都惊呆了一样。真的很强%%%
首先要注意到一个性质。位运算列与列之间是不会相互影响的,那么我们先观察使一列满足条件的操作序列需要满足什么条件。&0时,不论之前是什么数字,结果都是0,而|1时,结果都是1。我们现在将&用1表示,而|用0表示。这样我们将我们&|的操作序列转化为了一个01串。假设这一列数字操作出来做后的结果应当是1,显然有最后的一个|1在&0之后。我们比较一下两个串,同为1或者同为0则跳过(&1 和 |0 不影响数字的大小),然后当出现操作序列是1而数字序列是0时,就一定不合法;反之则一定合法(|1 和 &0 谁先出现)。
写到这里不知道有没有感觉出一点什么?其实就是在比较两个串的字典序啊。结果为1:操作串字典序 < 数字序列字典序;结果为0 :操作串字典序 >= 数字序列字典序。到这里正解就呼之欲出了:将所有的数字串(一列上的)按反序(自底向上)字典序排列,此后只要求出临界的两个字符串,答案就是这两个字符串的数字差啦。
#include <bits/stdc++.h>
using namespace std;
#define maxn 1105
#define maxm 5105
#define mod 1000000007
#define ll long long
#define int long long
ll n, m, q, sum[maxm], MAXX;
char Q[maxm], S[maxm]; struct node
{
int id;
char a[maxn];
}ch[maxm]; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} bool cmp(node a, node b)
{
for(int i = ; i <= n; i ++)
{
int k1 = a.a[i] - '', k2 = b.a[i] - '';
if(k1 == k2) continue;
else if(k1 > k2) return ;
else return ;
}
} ll Get_num(int x) //y - x
{
int ret1 = ;
for(int i = ; i <= n; i ++)
{
ret1 = ret1 * % mod;
if(ch[x].a[i] - '') ret1 += ;
}
return ret1;
} ll Qpow(int x, int t)
{
ll base = ;
for(; t; t >>= , x = (x * x) % mod)
if(t & ) base = (base * x) % mod;
return base;
} signed main()
{
n = read(), m = read(), q = read();
MAXX = Qpow(, n);
for(int i = ; i <= n; i ++)
{
scanf("%s", S + );
for(int j = ; j <= m; j ++)
ch[j].a[n - i + ] = S[j];
}
for(int i = ; i <= m; i ++) ch[i].id = i;
sort(ch + , ch + + m, cmp);
for(int i = ; i <= m; i ++)
sum[i] = Get_num(i);
for(int i = ; i <= q; i ++)
{
scanf("%s", Q + );
int mark1 = , mark2 = ;
for(int j = ; j <= m; j ++)
if(Q[ch[j].id] - '')
{
mark1 = j;
break;
}
for(int j = m; j >= ; j --)
{
if(!(Q[ch[j].id] - ''))
{
mark2 = j;
break;
}
}
if(mark1 && mark2 && mark2 >= mark1) printf("0\n");
else
{
if(mark1) printf("%lld\n", (sum[mark1] - sum[mark2] + mod) % mod);
else if(!mark1 && mark2) printf("%lld\n", (MAXX - sum[mark2] + mod) % mod);
else printf("%lld\n", MAXX);
}
}
return ;
}
【题解】HNOI2018寻宝游戏的更多相关文章
- 【BZOJ5285】[HNOI2018]寻宝游戏(神仙题)
[BZOJ5285][HNOI2018]寻宝游戏(神仙题) 题面 BZOJ 洛谷 题解 既然是二进制按位的运算,显然按位考虑. 发现这样一个关系,如果是\(or\)的话,只要\(or\ 1\),那么无 ...
- 5285: [Hnoi2018]寻宝游戏
5285: [Hnoi2018]寻宝游戏 链接 分析: 从下面依次确定运算符号,然后在确定的过程中,需要确定的位数会逐渐减少.比如最后有一个1,如果在从下往上确定了一个or 1,那么再往前可以随便选了 ...
- BZOJ.5285.[AHOI/HNOI2018]寻宝游戏(思路 按位计算 基数排序..)
BZOJ LOJ 洛谷 话说vae去年的专辑就叫寻宝游戏诶 只有我去搜Mystery Hunt和infinite corridor了吗... 同样按位考虑,假设\(m=1\). 我们要在一堆\(01\ ...
- [HNOI2018]寻宝游戏(题解转载自别处)
题解(自别处转载): Luogu CSDN 这题关键是将运算符也替换成0,1 然后在运算符与原串混杂里找规律. 而且替换的方式也有所要求,考场上两种替换方式都要尝试. #include <bit ...
- HNOI2018寻宝游戏
https://www.luogu.org/problemnew/show/P4424 题解 我们首先按位考虑. 如果有一位最终的结果为1,那么我们可以把树的序列看成一个二进制数,先出现的在底位,后出 ...
- 【比赛】HNOI2018 寻宝游戏
考试的时候就拿了30points滚粗了 听说myy对这题的倒推做法很无奈,官方题解在此 正解思路真的很巧妙,也说的很清楚了 就是分别考虑每一位,会发现题解中的那个性质,然后把询问的二进制数按照排序后的 ...
- loj2494 [hnoi2018]寻宝游戏
题意:给你n个元素的数组a.你可以在每个元素之前添加and和or的符号.每次询问最后变成r有多少种添号情况. n<=1000,m<=5000,q<=1000. 标程: #includ ...
- bzoj 5285: [Hnoi2018]寻宝游戏
Description Solution 把输入的 \(n\) 个二进制数看作一个大小为 \(n*m\) 的矩阵 把每一列压成一个二进制数,其中最高位是最下面的元素 然后就有了 \(m\) 个二进制数 ...
- bzoj千题计划310:bzoj5285: [Hnoi2018]寻宝游戏(思维题+哈希)
https://www.lydsy.com/JudgeOnline/problem.php?id=5285 |0 和 &1 没有影响 若填‘|’,记为0,若填‘&’,记为1 先只考虑最 ...
随机推荐
- http协议中的状态码(status code),超文本传输协议状态码
HTTP协议,又叫超文本传输协议. 在项目的开发过程中,前后端交互,这个用的是最多的,在后端给我的的接口调用时,我们往往先查看这个协议的状态码,状态码正常了,才进一步去看我们从后太拿的数据,是否为我们 ...
- js分割字符串
js分割字符串 我想达到通过 : 分割 只要第一次分割,后面的内容不使用分割 不行,没找到可以直接用的方法,不过可以通过其它方式达到效果 eg: str.split(':',2)[0] (第一个分隔符 ...
- fopen,fwrite,fread使用
fopen, fwrite, fread详解 1.头文件 #include <stdio.h> 2.fopen (1) 函数原型 FILE *fopen(char *filename, * ...
- (数据科学学习手札36)tensorflow实现MLP
一.简介 我们在前面的数据科学学习手札34中也介绍过,作为最典型的神经网络,多层感知机(MLP)结构简单且规则,并且在隐层设计的足够完善时,可以拟合任意连续函数,而除了利用前面介绍的sklearn.n ...
- AES128加密-S盒和逆S盒构造推导及代码实现
文档引用了<密码编码学与网络安全--原理和实践>里边的推导过程,如有不妥,请与我联系修改. 文档<FIPS 197>高级加密标准AES,里边有个S盒构造,涉及到了数论和有限域的 ...
- Office Web Apps Server(1)
Office Web Apps Server runs on one or more servers and provides browser-based Office file viewi ...
- 三种block
block的实现原理是C语言的函数指针. 函数指针即函数在内存中的地址,通过这个地址可以达到调用函数的目的. Block是NSObject的子类,拥有NSObject的所有属性,所以block对象也有 ...
- CDateTimeUI类源码分析
CDateTimeUI是duilib里选择日期的控件,继承于CLabelUI控件,用于记录已经选择的日期,选择控件则是调用win32的日期选择控件. CDateTimeUI包含两个类,一个是CDate ...
- 阿里云ECS下基于Centos7.4安装MySQL5.7.20
1.首先登录阿里云ECS服务器,如下图所示: 2.卸载MariaDB 说明:CentOS7.x默认安装MariaDB而不是MySQL,而且yum服务器上也移除了MySQL相关的软件包.因为Maria ...
- drf 缓存扩展
drf缓存给了一个非常方便的扩展,使用起来相当方便 1- 安装 pip install drf-extensions 2-配置 在settings里面增加两项配置 # drf扩展REST_FRAM ...