贪心算法之Kruskal
克鲁斯卡尔Kruskal算法同Prim算法一样,都是求最小生成树。Kruskal是不断的找最短边,加入集合,且不构成回路。
所以,我们可以给每个点定义一个集合,一边的起点和终点查看是否属于同一集合,如果是说明是回路,不成立,找下一条边。如果不属于同一集合,则成立,并把其中的一个集合的全部节点的集合改为另外一个集合,进行统一。
具体代码如下:
#include <iostream>
#include <algorithm> using namespace std;
#define MAXNODE 1000 int n,m;
struct Edge{
int u;
int v;
int w;
} e[MAXNODE * MAXNODE]; int nodeset[MAXNODE]; //每个顶点的集合 int Kruskal(int n); bool Merge(int u, int i); bool comp(Edge a, Edge b){
return a.w < b.w;
} void Init(int n){
for(int i=; i < n; i++){
nodeset[i] = i;
}
} int main(){
cout<<"请输入节点数n和边数m:";
cin>>n>>m;
Init(n);
cout << "请输入节点边的权值:";
for(int i = ; i < m; i++){
cin>>e[i].u>>e[i].v>>e[i].w;
}
sort(e, e+m, comp);
int ans = Kruskal(n);
cout<<ans<<endl;
} int Kruskal(int n) {
int ans = ;
for(int i = ; i < m; i++){
if(Merge(e[i].u, e[i].v)){//可以合并
ans += e[i].w;
n--;
if(n==)
return ans;
}
}
return ;
} bool Merge(int u, int i) {
int a = nodeset[u];
int b = nodeset[i];
if(a == b)
return false;
//归并节点集合
for(int j = ; j < n; j++){
if(nodeset[j] == b){
nodeset[j] = a;
}
}
return true;
}
同时,与Prim算法相比,因为Kruskal是按照边进行的,所以适合边少的情况,即稀疏图。而Prim是按照点进行的,比较适合稠密图。
贪心算法之Kruskal的更多相关文章
- 贪心算法(2)-Kruskal最小生成树
什么是最小生成树? 生成树是相对图来说的,一个图的生成树是一个树并把图的所有顶点连接在一起.一个图可以有许多不同的生成树.一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n ...
- 贪心算法-最小生成树Kruskal算法和Prim算法
Kruskal算法: 不断地选择未被选中的边中权重最轻且不会形成环的一条. 简单的理解: 不停地循环,每一次都寻找两个顶点,这两个顶点不在同一个真子集里,且边上的权值最小. 把找到的这两个顶点联合起来 ...
- 贪心算法(Greedy Algorithm)之最小生成树 克鲁斯卡尔算法(Kruskal's algorithm)
克鲁斯卡尔算法(Kruskal's algorithm)是两个经典的最小生成树算法的较为简单理解的一个.这里面充分体现了贪心算法的精髓.大致的流程能够用一个图来表示.这里的图的选择借用了Wikiped ...
- 贪心算法(Greedy Algorithm)最小生成树 克鲁斯卡尔算法(Kruskal's algorithm)
克鲁斯卡尔算法(Kruskal's algorithm)它既是古典最低的一个简单的了解生成树算法. 这充分反映了这一点贪心算法的精髓.该方法可以通常的图被表示.图选择这里借用Wikipedia在.非常 ...
- 最小生成树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind
最小支撑树树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind 最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小 ...
- 最小生成树之Prim算法,Kruskal算法
Prim算法 1 .概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gr ...
- 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集
最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...
- 数据结构与算法系列----最小生成树(Prim算法&Kruskal算法)
一:Prim算法 1.概览 普里姆算法(Prim算法).图论中的一种算法.可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中.不但包含了连通图里的全部顶点(英语:Ve ...
- [C++]哈夫曼树(最优满二叉树) / 哈夫曼编码(贪心算法)
一 哈夫曼树 1.1 基本概念 算法思想 贪心算法(以局部最优,谋求全局最优) 适用范围 1 [(约束)可行]:它必须满足问题的约束 2 [局部最优]它是当前步骤中所有可行选择中最佳的局部选择 3 [ ...
随机推荐
- 调查UIRecorder 测试报告的CI(集成)实现方式
以下内容来自uirecorder官网: 如何接入Jenkins? 添加命令 source ./install.sh source ./run.sh 添加报告 JUnit: reports/index. ...
- VueJs - 世界地图(根据返回国家value值的大小来展示颜色的深浅分布)
一.实现功能 1.画出世界各国的世界地图 2.根据返回name->国家全称.value->数量,渲染对比世界各国成功的国家,予以值域范围的高亮 3.滑入国家地图,出现tooltip框,提示 ...
- HTML专题
1. 在<form><form/>标签里面的<button>标签要设置type="button",否则可能会在点击按钮时自动提交这个表单 2. ...
- 增加C盘空间大小
随着我们使用电脑的时间越来越久,电脑C盘的空间会出现不够用的情况,这时我们需要的就是增加C盘的大小,基本上有两种方式 1.通过系统自带的磁盘管理(有可能没法操作,主要介绍第二种) 2.通过分区软件进行 ...
- June 01st 2017 Week 22nd Thursday
Do what you say, say what you do. 做你说过的,说你能做的. Do what I have said, live up to my promise, answer th ...
- OC extern和函数
#include <stdio.h> // 定义一个one函数 // 完整地定义一个外部函数需要extern关键字 //extern void one() { // printf(&quo ...
- 初识prufer序列
前言 \(prufer\)序列应该是一个比较实用的东西. 据\(hl666\)大佬说,一切与度数有关的树上计数问题,都可以用它以及它的性质来解决. 而听说\(ZJOI\)最近特别喜欢出计数题,所以有必 ...
- 郑州Day6
今天考了毕姥爷的一套题,差点保龄 题目 挺良心的一套题,至少我不用再搬一遍题面了 T1.B君的第一题 我为什么当时去写了一个树形\(dp\)还妄图\(A\)掉啊 这题保龄感觉舒爽 首先如果我们要求的是 ...
- ueditor图片上传,网络连接错误的解决方案
错误产生的原因是ueditor/net目录中的Uploader.cs在网站发布之后就没有了,重新上传这个文件,问题就解决了
- Java数据结构的实现
1.基于数组的链表 package array; import java.util.Arrays; /** * 基于数组的链表 * * @author 王彪 * */ public class MyA ...