CVPR2018_Crafting a Toolchain for Image Restoration by Deep Reinforcement Learning

http://mmlab.ie.cuhk.edu.hk/projects/RL-Restore/

强化学习的入门介绍:https://blog.csdn.net/aliceyangxi1987/article/details/73327378

https://www.zhihu.com/question/41775291

CNN在low-level的问题处理前沿:

deblurring:   S. Nah, T. H. Kim, and K. M. Lee. Deep multi-scale convolutional
neural network for dynamic scene deblurring. In
CVPR, 2017.

J. Sun, W. Cao, Z. Xu, and J. Ponce. Learning a convolutional
neural network for non-uniform motion blur removal.
In CVPR, 2015.

L. Xu, X. Tao, and J. Jia. Inverse kernels for fast spatial
deconvolution. In ECCV, 2014.

denoising:  

Y. Chen,W. Yu, and T. Pock. On learning optimized reaction
diffusion processes for effective image restoration. In CVPR,
2015.

S. Lefkimmiatis. Non-local color image denoising with convolutional
neural networks. In CVPR, 2017.

Z. Wang, D. Liu, S. Chang, Q. Ling, Y. Yang, and T. S.
Huang. D3: Deep dual-domain based fast restoration of
JPEG-compressed images. In CVPR, 2016.

JPEG artifacts reduction:  

C. Dong, Y. Deng, C. C. Loy, and X. Tang. Compression artifacts
reduction by a deep convolutional network. In ICCV,
2015.

J. Guo and H. Chao. Building dual-domain representations
for compression artifacts reduction. In ECCV, 2016.

Z. Wang, D. Liu, S. Chang, Q. Ling, Y. Yang, and T. S.
Huang. D3: Deep dual-domain based fast restoration of
JPEG-compressed images. In CVPR, 2016.

super-resolution:       

C. Dong, C. C. Loy, K. He, and X. Tang. Image superresolution
using deep convolutional networks. TPAMI,
38(2):295–307, 2016.

T.-W. Hui, C. C. Loy, and X. Tang. Depth map superresolution
by deep multi-scale guidance. In ECCV, 2016.

J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image superresolution
using very deep convolutional networks. In CVPR,
2016.

J. Kim, J. Kwon Lee, and K. Mu Lee. Deeply-recursive
convolutional network for image super-resolution. In CVPR,
2016.

W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep
laplacian pyramid networks for fast and accurate superresolution.
In CVPR, 2017.

Y. Tai, J. Yang, and X. Liu. Image super-resolution via deep
recursive residual network. In CVPR, 2017.

Y. Tai, J. Yang, X. Liu, and C. Xu. Memnet: A persistent
memory network for image restoration. In ICCV, 2017.

X. Wang, K. Yu, C. Dong, and C. C. Loy. Recovering realistic
texture in image super-resolution by deep spatial feature
transform. In CVPR, 2018.

PSNR:

详细解释,读下面的链接:

http://www.360doc.com/content/16/0919/12/496343_591970301.shtml

独热码,在英文文献中称做 one-hot code, 直观来说就是有多少个状态就有多少比特,而且只有一个比特为1,其他全为0的一种码制,更加详细参加one_hot code(维基百科)。在机器学习中对于离散型的分类型的数据,需要对其进行数字化比如说性别这一属性,只能有男性或者女性或者其他这三种值,如何对这三个值进行数字化表达?一种简单的方式就是男性为0,女性为1,其他为2,这样做有什么问题?

 长短期记忆(Long-Short Term Memory, LSTM)是一种时间递归神经网络(RNN),论文首次发表于1997年。由于独特的设计结构,LSTM适合于处理和预测时间序列中间隔和延迟非常长的重要事件。

http://www.cnblogs.com/wangduo/p/6773601.html

CVPR2018_Crafting a Toolchain for Image Restoration by Deep Reinforcement Learning的更多相关文章

  1. (转) Playing FPS games with deep reinforcement learning

    Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...

  2. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

  3. Learning Roadmap of Deep Reinforcement Learning

    1. 知乎上关于DQN入门的系列文章 1.1 DQN 从入门到放弃 DQN 从入门到放弃1 DQN与增强学习 DQN 从入门到放弃2 增强学习与MDP DQN 从入门到放弃3 价值函数与Bellman ...

  4. (转) Deep Reinforcement Learning: Playing a Racing Game

    Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playi ...

  5. 论文笔记之:Dueling Network Architectures for Deep Reinforcement Learning

    Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper 摘要:本文的贡献点主要是在 DQN ...

  6. getting started with building a ROS simulation platform for Deep Reinforcement Learning

    Apparently, this ongoing work is to make a preparation for futural research on Deep Reinforcement Le ...

  7. (转) Deep Reinforcement Learning: Pong from Pixels

    Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from ...

  8. 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning

    Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...

  9. 论文笔记之:Deep Reinforcement Learning with Double Q-learning

    Deep Reinforcement Learning with Double Q-learning Google DeepMind Abstract 主流的 Q-learning 算法过高的估计在特 ...

随机推荐

  1. oracle lpad rpad函数

    学习并记录 1.情况一 ) from dual; 运行结果如下: email长度5,默认添加3个空格在左边 2.情况二 ) from dual; 运行结果如下: email长度5,截取2两个字符 3. ...

  2. SqlServer代理(已禁用代理xp)

    SqlServer 本地库作业管理的时候已禁用,将其修改为可使用,master数据库下执行以下语句: sp_configure 'show advanced options', 1;  GO  REC ...

  3. POJ P2318 TOYS与POJ P1269 Intersecting Lines——计算几何入门题两道

    rt,计算几何入门: TOYS Calculate the number of toys that land in each bin of a partitioned toy box. Mom and ...

  4. 神奇的AC

  5. IoT Gateway Based on OSGi

    1. OSGi Knowleage 2. OSGi.Net on Windows 3. OSGi with JAVA 4. OSGi with Qt and C++ 5. Architecture o ...

  6. 如何在 Azure 中的经典 Windows 虚拟机上设置终结点

    在 Azure 中使用经典部署模型创建的所有 Windows 虚拟机都可以通过专用网络通道与同一云服务或虚拟网络中的其他虚拟机自动通信. 但是,Internet 或其他虚拟网络中的计算机需要终结点将入 ...

  7. .net core系列之《对AOP思想的理解及使用AspectCore实现自定义日志拦截》

    对于AOP这个名词,相信对于搞过MVC开发的人来说,都很熟悉,里面各种各样的Filter简直是将AOP体现到了极致. 那么什么是AOP呢? AOP(Aspect Oriented Programmin ...

  8. 打通版微社区(1):PHP环境部署 for DZX3.2

    写在前面:本文参考了http://blog.sina.com.cn/s/blog_513be2630101linz.html非常感谢博主此文对我此次操作帮助很大.PHP的windows部署方案主要分为 ...

  9. Exchange 2016证书配置

    配置证书: 第一步,在ECP界面生成证书请求文件: 1.在“服务器 —>证书”界面,选择一台服务器,点击“+”来添加证书申请,如下图: 2.默认下一步, 3.填写证书的友好名称,如下图: 4.默 ...

  10. ZT fcntl设置FD_CLOEXEC标志作用

    fcntl设置FD_CLOEXEC标志作用 分类: C/C++ linux 2011-11-02 22:11 3217人阅读 评论(0) 收藏 举报 bufferexegccnullfile 通过fc ...