题目描述

有nnn盏灯环形排列,顺时针依次标号为1⋯n1\cdots
n1⋯n。初始时刻为000,初始时刻第iii盏灯的亮灭aia_iai​给定,000表示灭,111表示亮。下一时刻每盏灯的亮灭取决于当前时刻这盏灯与顺时针方向下一盏灯的亮灭。若两盏灯状态相同,则下一时刻该灯灭,否则该灯亮。

试求时刻ttt第kkk盏灯的状态。

输入输出格式

输入格式:

第一行,三个整数,分别为n,t,kn,
t, kn,t,k。

第二行,共nnn个整数,分别为000或111,代表aia_iai​。

输出格式:

共一行,一个数,000或111,代表时刻ttt第kkk盏灯的状态。

输入输出样例

输入样例#1:
复制

4 2 1
1 0 1 0
输出样例#1:
复制

0

说明

对于25%25\%25%的数据,有1≤t,k≤n≤10001\leq
t, k\leq n\leq 10001≤t,k≤n≤1000。

对于60%60\%60%的数据,有1≤t,k≤n≤1051\leq
t, k\leq n\leq 10^51≤t,k≤n≤105。

对于100%100\%100%的数据,有1≤t,k≤n≤3∗1061\leq
t, k\leq n\leq 3*10^61≤t,k≤n≤3∗106。

题解

每次当前位和下一位异或,在纸上模拟一下就可以发现对于未知k往下每一位贡献异或的次数是一个杨辉三角第n行
当且仅当该位初始状态为1 且贡献次数为奇数才会对答案产生贡献,O(n)扫一遍就好了

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
using namespace std;
const int maxn = 3000005,maxm = 100005,INF = 200000000; inline int read(){
int out = 0,flag = 1;char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = out * 10 + c - 48; c = getchar();}
return out * flag;
} int n,T,K,A[maxn]; void init(){
n = read();
T = read();
K = read();
for (int i = 1; i <= n; i++) A[i] = read();
} void solve(){
int ans = A[K],cnt = 0,t;
for (int i = 1,j = K % n + 1; i <= T; i++,j = j % n + 1){
t = T - i + 1;
while (!(t & 1)) cnt++,t >>= 1;
t = i;
while (!(t & 1)) cnt--,t >>= 1;
if (!cnt && A[j]) ans ^= 1;
}
printf("%d\n",ans);
} int main()
{
init();
solve();
return 0;
}

洛谷U14200 Changing 题解 【杨辉三角】的更多相关文章

  1. 洛谷P2822 组合数问题 杨辉三角

    没想到这道题竟然这么水- 我们发现m,n都非常小,完全可以O(nm)O(nm)O(nm)预处理出stripe数组,即代表(i,j)(i,j)(i,j) 及其向上的一列的个数,然后进行递推即可. #in ...

  2. 杨辉三角 x

    杨辉三角是美丽的数学结晶,其结论往往多蕴含自然之美. ——以下内容均摘抄自题解. 例题: 洛谷P1762  偶数 正如这题所示,数据在n<=10^15的范围内则引导我们去寻找空间更节省,速率更高 ...

  3. 2021.07.19 P2624 明明的烦恼(prufer序列,为什么杨辉三角我没搞出来?)

    2021.07.19 P2624 明明的烦恼(prufer序列,为什么杨辉三角我没搞出来?) [P2624 HNOI2008]明明的烦恼 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn ...

  4. HDU 2032 杨辉三角

    http://acm.hdu.edu.cn/showproblem.php?pid=2032 Problem Description 还记得中学时候学过的杨辉三角吗?具体的定义这里不再描述,你可以参考 ...

  5. Pascal's Triangle leetcode java(杨辉三角)

    题目: Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5, ...

  6. LeetCode:杨辉三角【118】

    LeetCode:杨辉三角[118] 题目描述 给定一个非负整数 numRows,生成杨辉三角的前 numRows 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例: 输入: 5 输出: ...

  7. hdu 5698(杨辉三角的性质+逆元)

    ---恢复内容开始--- 瞬间移动 Accepts: 1018 Submissions: 3620 Time Limit: 4000/2000 MS (Java/Others) Memory Limi ...

  8. 力扣119.杨辉三角II-C语言实现

    题目 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例: 输入: 3 输出: [1,3,3,1] 来源:力扣(LeetCod ...

  9. [LeetCode] Pascal's Triangle II 杨辉三角之二

    Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3, ...

随机推荐

  1. Python运维三十六式:用Python写一个简单的监控系统

    市面上有很多开源的监控系统:Cacti.Nagios.Zabbix.感觉都不符合我的需求,为什么不自己做一个呢? 用Python两个小时徒手撸了一个简易的监控系统,给大家分享一下,希望能对大家有所启发 ...

  2. 深入解析QML引擎, 第4部分: 自定义解析器

    原文 QML Engine Internals, Part 4: Custom Parsers ——————————————————————————————————————————— 上一篇 绑定类型 ...

  3. Swift入门基础知识

    var //代表变量,变量的值可以改变 let//代表常量类型不可改变 //声明常量heh类型Swift会自动根据你的值来自动判断该变量的类型也可以指定类型(个人感觉还是指定类型的比较好,可能会减少系 ...

  4. [C++基础] 成员变量的初始化顺序

    转载链接:https://blog.csdn.net/qq_37059483/article/details/78608375 1.成员变量在使用初始化列表初始化时,只与定义成员变量的顺序有关,与构造 ...

  5. C#判断字符串中是否有数字

    // <summary> /// 提取字符串中的数字字符串 /// </summary> /// <param name="str"></ ...

  6. Method 'ExecuteAsync' in type 'System.Data.Entity.SqlServer.DefaultSqlExecutionStrategy' does not have an implementation

    一.错误信息 Entity Framework 6.0数据迁移:Add-Migration XXXX 命令发生错误 System.Reflection.TargetInvocationExceptio ...

  7. Linux下文件的打包、解压缩指令——tar,gzip,bzip2

    本文是对 鸟叔的Linux私房菜(基础学习篇) 第三版 的学习笔记,原文可参考原书中文网站 鸟叔的Linux私房菜.更多详细信息可直接参考对应Linux命令的 man 帮助( 如 man tar). ...

  8. 清空git缓存

    git rm -r --cached .git add . git commit -m 'update .gitignore' 读了下git文档,才发现,这些东西其实很简单,很容易理解.cached其 ...

  9. java运行时内存分类

    主要有java栈(虚拟机栈), 堆 ,方法区. 线程私有: 栈: 每个方法执行的时候 都会同时创建一个栈桢 Stack Frame 用于存储  局部变量表, 操作数栈,动态链接, 方法出口等信息 线程 ...

  10. php序列化问题

    序列化是将变量转换为可保存或传输的字符串的过程:反序列化就是在适当的时候把这个字符串再转化成原来的变量使用.这两个过程结合起来,可以轻松地存储和传输数据,使程序更具维护性. 1. serialize和 ...