[洛谷P5147]随机数生成器
题目大意:
$$
f_n=
\begin{cases}
\frac{\sum\limits_{i=1}^nf_i}n+1&(n>1)\\
0&(n=1)
\end{cases}
$$
求$f_n(n<2^{31})$
题解:考虑$n>2$时的情况。
$$
f_n=\dfrac{\sum\limits_{i=1}^nf_i}n+1\\
nf_n=\sum\limits_{i=1}^{n-1}f_i+f_n+n\\
\begin{align}
(n-1)f_n=\sum\limits_{i=1}^{n-1}f_i+n\\
(n-2)f_{n-1}=\sum\limits_{i=1}^{n-2}f_i+n-1\\
\end{align}\\
(1)-(2),得:\\
(n-1)f_n-(n-2)f_{n-1}=\sum\limits_{i=1}^{n-1}f_i+n-(\sum\limits_{i=1}^{n-2}f_i+n-1)\\
(n-1)(f_n-f_{n-1})=1\\
f_n-f_{n-1}=\dfrac1{n-1}
$$
特别的,当$n=2$时,$f_{n-1}$无法用原来的公式来计算,所以$f_n-f_{n-1}$要特别计算,为$2$
当$n>1$时
$$
\begin{align*}
ans&=2+\sum\limits_{i=2}^{n-1}\dfrac1i\\
&=1+\sum\limits_{i=1}^{n-1}\dfrac1i
\end{align*}
$$
但是$n<2^{31}$,无法$O(n)$计算,但是右边的东西(调和级数$H(x)$)在$n$较大时有一个公式:$H_n=\ln(n)+\gamma$。($\gamma$的定义就是$\gamma=\lim\limits_{n\to\infty}H_n-\ln(n)$,$\gamma=0.57721566490153286060651209008240243104215933593992\dots$)
卡点:无
C++ Code:
#include <cstdio>
#include <cmath>
const int limit = 1000000;
const long double EulerGamma = 0.577215664901532860606512090082; int n;
long double ans = 1;
int main() {
scanf("%d", &n);
if (n == 1) {
puts("0.00000");
return 0;
}
if (n <= limit) for (int i = 1; i < n; ++i) ans += 1 / static_cast<long double> (i);
else ans += logl(n - 1) + EulerGamma;
printf("%.5Lf\n", ans);
return 0;
}
[洛谷P5147]随机数生成器的更多相关文章
- 洛谷P3600 随机数生成器(期望dp 组合数)
题意 题目链接 Sol 一条重要的性质:如果某个区间覆盖了另一个区间,那么该区间是没有用的(不会对最大值做出贡献) 首先不难想到枚举最终的答案\(x\).这时我们需要计算的是最大值恰好为\(x\)的概 ...
- 洛谷P3600随机数生成器——期望+DP
原题链接 写到一半发现写不下去了... 所以orz xyz32768,您去看这篇题解吧,思路很清晰,我之前写的胡言乱语与之差距不啻天渊 #include <algorithm> #incl ...
- 洛谷P3306 随机数生成器
题意:给你一个数列,a1 = x,ai = (A * ai-1 + B) % P,求第一个是t的是哪一项,或者永远不会有t. 解:循环节不会超过P.我们使用BSGS的思想,预处理从t开始跳√P步的,插 ...
- 洛谷 P3600 - 随机数生成器(期望 dp)
题面传送门 我竟然独立搞出了这道黑题!incredible! u1s1 这题是我做题时间跨度最大的题之一-- 首先讲下我四个月前想出来的 \(n^2\log n\) 的做法吧. 记 \(f(a)=\m ...
- 洛谷 [P4035] 球形空间生成器
高斯消元 注意浮点误差,判断一个浮点数是否为 0 的时候,看他的绝对值与 \(10^{-8}\)的关系 #include <iostream> #include <algorithm ...
- 【洛谷 P3306】[SDOI2013]随机数生成器 (BSGS)
题目链接 怎么这么多随机数生成器 题意见原题. 很容易想到\(BSGS\)算法,但是递推式是\(X_{i+1}=(aX_i+b)\mod p\),这显然不是一个等比数列. 但是可以用矩阵乘法来求出第\ ...
- 洛咕 P3306 [SDOI2013]随机数生成器
洛咕 P3306 [SDOI2013]随机数生成器 大力推式子??? \(X_{i}=\underbrace{a(a(\cdots(a(a}_{i-1个a}X_1+b)))\cdots)\) \(=b ...
- 洛谷NOIp热身赛题解
洛谷NOIp热身赛题解 A 最大差值 简单树状数组,维护区间和.区间平方和,方差按照给的公式算就行了 #include<bits/stdc++.h> #define il inline # ...
- 【BZOJ3122】随机数生成器(BSGS,数论)
[BZOJ3122]随机数生成器(BSGS,数论) 题面 BZOJ 洛谷 题解 考虑一下递推式 发现一定可以写成一个 \(X_{i+1}=(X_1+c)*a^i-c\)的形式 直接暴力解一下 \(X_ ...
随机推荐
- iOS 小技巧
投影效果 scanBtn.layer.shadowColor = [UIColorblackColor].CGColor;//shadowColor阴影颜色 scanBtn.layer.sha ...
- rocketmq Lock failed,MQ already started -c参数
今天部署rocketmq集群时一台机器部署一个master 和slave,slave部署总是失败,通过查看日志显示下面的错误 java.lang.RuntimeException: Lock fail ...
- katalon系列十五:给浏览器添加cookie自动登陆
import org.openqa.selenium.Cookieimport org.openqa.selenium.WebDriverimport com.kms.katalon.core.web ...
- Composer指南
安装 windows中安装Composer 一般来说,windows下安装composer有两种办法,一种是直接下载并运行Composer-Setup.exe,这种方法在中国似乎很难完成安装.另一种就 ...
- 基于C#的机器学习--模糊逻辑-穿越障碍
模糊逻辑-穿越障碍 模糊逻辑.另一个我们经常听到的术语.但它的真正含义是什么?它是否意味着不止一件事?我们马上就会知道答案. 我们将使用模糊逻辑来帮助引导一辆自动驾驶汽车绕过障碍,如果我们做得正确,我 ...
- Node2vec 代码分析
Node2vec 代码从Github上clone到本地,主要是main.py和node2vec.py两个文件. 下面把我的读代码注释放到上面来, import numpy as np import n ...
- Amazon.com Seller Distributed Inventory Placement Inventory Placement Service
Greetings, Thank you for writing to us. I understand that you would like to send inventory to our wa ...
- 关于 WebView 知识点的详解
什么是 WebView WebView 是手机中内置了一款高性能 webkit 内核浏览器,在 SDK 中封装的一个组件.没有提供地址栏和导航栏, WebView 只是单纯的展示一个网页界面.在开发中 ...
- “Hello World!”团队第十三次会议
今天是我们团队“Hello World!”团队召开的第十三次会议.博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 一.会议时间 2 ...
- JScript脚本
这个好强大啊 .fiddler2是部分是用这个语言开发的.