【LOJ6436】【PKUSC2018】神仙的游戏(NTT)

题面

LOJ

题解

看到\(zsy\)从\(PKUSC\)回来就秒掉了这种神仙题

吓得我也赶快看了看\(PKUSC\)都有些什么神仙题

然后就找到了这样一道神仙题

考虑一个奇怪的暴力:

我们只需要对于\(0/1\)进行匹配

如果出现了\(0/1\)匹配的情况,那么当前长度一定不能构成\(border\)

的确,这样子肯定是对的,

但是我们似乎有一些奇怪的情况没有考虑清楚

如果两个串出现了交集,似乎不能构成\(border\)的情况就会增加诶

这样考虑很不清楚,我们从另外一个角度考虑\(border\)

如果存在长度为\(len\)的\(border\)

我们把字符串按照位置对于\(n-len\)的余数分类

显然在同一类中的所有字符都要一样。

证明?画下图就清楚了。

现在有了这个结论,我们再来考虑这个问题。

我们要检查一个长度为\(len\)的\(border\)是否存在

只需要检查是否出现了分组之后不满足同组相同的情况

现在只需要把串翻转,然后将正反两个串的分别以\(0/1\)来构建生成函数

做个卷积\(check\)一下就好了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MOD 998244353
#define MAX 3000000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
ll ans;
int N,n,l;
int r[MAX],W[MAX],A[MAX],B[MAX],s[MAX];
char c[MAX];
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
void NTT(int *P,int opt)
{
for(int i=1;i<N;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<N;i<<=1)
{
int w=fpow(3,(MOD-1)/(i<<1));W[0]=1;
for(int k=1;k<i;++k)W[k]=1ll*W[k-1]*w%MOD;
for(int p=i<<1,j=0;j<N;j+=p)
for(int k=0;k<i;++k)
{
int X=P[j+k],Y=1ll*P[i+j+k]*W[k]%MOD;
P[j+k]=(X+Y)%MOD;P[i+j+k]=(X+MOD-Y)%MOD;
}
}
if(opt==-1)
{
reverse(&P[1],&P[N]);
for(int i=0,inv=fpow(N,MOD-2);i<N;++i)P[i]=1ll*P[i]*inv%MOD;
} }
int main()
{
scanf("%s",c);
n=strlen(c);
for(N=1;N<n+n;N<<=1)++l;
for(int i=0;i<N;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
for(int i=0;i<n;++i)A[i]=c[i]=='0',B[i]=c[n-i-1]=='1';
NTT(A,1);NTT(B,1);
for(int i=0;i<N;++i)A[i]=1ll*A[i]*B[i]%MOD;
NTT(A,-1);
ans=1ll*n*n;
for(int i=1;i<n;++i)
{
ans^=1ll*(n-i)*(n-i);
for(int j=i;j<n;j+=i)
if(A[n-j-1]||A[n+j-1]){ans^=1ll*(n-i)*(n-i);break;}
}
printf("%lld\n",ans);
return 0;
}

【LOJ6436】【PKUSC2018】神仙的游戏(NTT)的更多相关文章

  1. [LOJ6436][PKUSC2018]神仙的游戏

    loj description 给你一个只有01和?的字符串,问你是否存在一种把?改成01的方案使串存在一个长度为\(1-n\)的\(border\).\(n\le5\times10^5\) sol ...

  2. LOJ6436 [PKUSC2018] 神仙的游戏 【FFT】

    题目分析: 题目要求前后缀相同,把串反过来之后是一个很明显的卷积的形式.这样我们可以完成初步判断(即可以知道哪些必然不行). 然后考虑一下虽然卷积结果成立,但是存在问号冲突的情况. 箭头之间应当不存在 ...

  3. BZOJ5372: [Pkusc2018]神仙的游戏

    BZOJ5372: [Pkusc2018]神仙的游戏 https://lydsy.com/JudgeOnline/problem.php?id=5372 分析: 如果\(len\)为\(border\ ...

  4. BZOJ5372: PKUSC2018神仙的游戏

    传送门 Sol 自己还是太 \(naive\) 了,上来就构造多项式和通配符直接匹配,然后遇到 \(border\) 相交的时候就 \(gg\) 了 神仙的游戏蒟蒻还是玩不来 一个小小的性质: 存在长 ...

  5. LOJ6436. 「PKUSC2018」神仙的游戏 [NTT]

    传送门 思路 首先通过各种手玩/找规律/严谨证明,发现当\(n-i\)为border当且仅当对于任意\(k\in[0,i)\),模\(i\)余\(k\)的位置没有同时出现0和1. 换句话说,拿出任意一 ...

  6. BZOJ5372 PKUSC2018神仙的游戏(NTT)

    首先有一个想法,翻转串后直接卷积看有没有0匹配上1.但这是必要而不充分的因为在原串和翻转串中?不能同时取两个值. 先有一些结论: 如果s中长度为len的前缀是border,那么其存在|s|-len的循 ...

  7. bzoj 5372: [Pkusc2018]神仙的游戏

    Description 小D和小H是两位神仙.他们经常在一起玩神仙才会玩的一些游戏,比如"口算一个4位数是不是完全平方数". 今天他们发现了一种新的游戏:首先称s长度为len的前缀 ...

  8. [PKUSC2018]神仙的游戏(FFT)

    给定一个01?串,对所有len询问是否存在一种填法使存在长度为len的border. 首先有个套路的性质:对于一个长度为len的border,这个字符串一定有长度为n-len的循环节(最后可以不完整) ...

  9. [PKUSC2018]神仙的游戏

    题目 画一画就会发现一些奇诡的性质 首先如果\(len\)为一个\(\operatorname{border}\),那么必然对于\(\forall i\in [1,len]\),都会有\(s_i=s_ ...

  10. loj 6436 PKUSC2018 神仙的游戏

    传送门 好妙蛙 即串\(s\)长度为\(n\)首先考虑如果一个长度为\(len\)的\(border\)存在,当且仅当对所有\(i\in[1,len],s[i]=s[n-len+i]\),也就是所有模 ...

随机推荐

  1. 怎样安装Scrapy

    Windows怎样安装Scrapy? pip install scrapy会报错 访问https://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted 下载并放到 ...

  2. Pairs Forming LCM LightOJ - 1236 素因子分解

    Find the result of the following code: long long pairsFormLCM( int n ) {    long long res = 0;    fo ...

  3. Spark之spark shell

    前言:要学习spark程序开发,建议先学习spark-shell交互式学习,加深对spark程序开发的理解.spark-shell提供了一种学习API的简单方式,以及一个能够进行交互式分析数据的强大工 ...

  4. 基于Mininet测量路径的损耗率

    基于Mininet测量路径的损耗率 控制器采用POX,基于OVS仿真 Mininet脚本 创建Node mininet.node Node 创建链路连接 mininet.link TCLink 设置i ...

  5. Hyperledger Fabric中的Identity

    Hyperledger Fabric中的Identity 什么是Identity 区块链网络中存在如下的角色:peers, orderers, client application, administ ...

  6. Wampserver 修改根目录

    wampserver 默认根目录在 www 文件夹下 修改根目录方法如下: 1. 在打算存放项目或代码的位置新建文件夹(我建在了C:/MyProject) 2. 打开 httpd.conf 文件(该文 ...

  7. Amazon及其亏本诱饵策略还能坚持多久?

    Amazon 刚刚公布了最新的财报,亏损 4100 万美元.这是这家电子商务巨头连续 5 个季度以来的第 3 次亏损.但是华尔街似乎却一片叫好声,当日 Amazon 的股价也涨了近 8 个点达 359 ...

  8. Hyper-V虚拟机联网设置

    转自:http://www.3lian.com/edu/2012/12-22/50492.html Windows 8中内置的Hyper-V管理器可以说给许多人带来了惊喜!在Hyper-V管理器强大的 ...

  9. 测试与优化bugbugbugbug

    单元测试

  10. 03慕课网《进击Node.js基础(一)》API-URL网址解析

    url url.parse(url,query,host);解析域名 url必须,地址字符串 query可选 host 可选:在不清楚协议时正确解析 querystring 字符串和对象之间互相解析 ...