题目链接

ZOJ3899

题解

比较累,做一道水题

还被卡常= =

我在\(ZOJ\)交过的两道\(NTT\)都被卡常了。。

哦,题意就是求第二类斯特林数,然后线段树维护一下集合数量就可以了

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
#define ls (u << 1)
#define rs (u << 1 | 1)
#define res register
using namespace std;
const int maxn = 400005,maxv = 100000,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int sum[maxn],rev[maxn];
inline void upd(int u){sum[u] = sum[ls] + sum[rs];}
inline void pd(int u,int l,int r){
int mid = l + r >> 1;
if (rev[u]){
sum[ls] = (mid - l + 1) - sum[ls]; rev[ls] ^= 1;
sum[rs] = (r - mid) - sum[rs]; rev[rs] ^= 1;
rev[u] = 0;
}
}
void modify(int u,int l,int r,int L,int R){
if (l >= L && r <= R){sum[u] = (r - l + 1) - sum[u]; rev[u] ^= 1; return;}
pd(u,l,r);
int mid = l + r >> 1;
if (mid >= L) modify(ls,l,mid,L,R);
if (mid < R) modify(rs,mid + 1,r,L,R);
upd(u);
}
void build(int u,int l,int r){
rev[u] = 0;
if (l == r){sum[u] = 1; return;}
int mid = l + r >> 1;
build(ls,l,mid);
build(rs,mid + 1,r);
upd(u);
}
const int G = 26,P = 880803841;
int R[maxn];
inline int qpow(int a,int b){
int re = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) re = 1ll * re * a % P;
return re;
}
void NTT(int* a,int n,int f){
for (res int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
for (res int i = 1; i < n; i <<= 1){
int gn = qpow(G,(P - 1) / (i << 1));
for (res int j = 0; j < n; j += (i << 1)){
int g = 1,x,y;
for (res int k = 0; k < i; k++,g = 1ll * g * gn % P){
x = a[j + k],y = 1ll * g * a[j + k + i] % P;
a[j + k] = (x + y) % P,a[j + k + i] = ((x - y) % P + P) % P;
}
}
}
if (f == 1) return;
int nv = qpow(n,P - 2); reverse(a + 1,a + n);
for (res int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
}
int N,M,D,fac[maxn],fv[maxn];
int S[maxn],A[maxn];
void init(){
fac[0] = 1;
for (res int i = 1; i <= maxv; i++)
fac[i] = 1ll * fac[i - 1] * i % P;
fv[maxv] = qpow(fac[maxv],P - 2); fv[0] = 1;
for (res int i = maxv - 1; i; i--)
fv[i] = 1ll * fv[i + 1] * (i + 1) % P;
}
int main(){
init();
int T = read(),l,r;
while (T--){
N = read(); M = read(); D = read();
build(1,1,M);
for (res int i = 0; i <= M; i++){
S[i] = (((i & 1) ? -1 : 1) * fv[i] % P + P) % P;
A[i] = 1ll * qpow(i,N) * fv[i] % P;
}
int n = 1,L = 0;
while (n <= (M << 1)) n <<= 1,L++;
for (res int i = M + 1; i < n; i += 4){
S[i] = A[i] = 0;
S[i + 1] = A[i + 1] = 0;
S[i + 2] = A[i + 2] = 0;
S[i + 3] = A[i + 3] = 0;
}
for (res int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
NTT(S,n,1); NTT(A,n,1);
for (res int i = 0; i < n; i += 4){
S[i] = 1ll * S[i] * A[i] % P;
S[i + 1] = 1ll * S[i + 1] * A[i + 1] % P;
S[i + 2] = 1ll * S[i + 2] * A[i + 2] % P;
S[i + 3] = 1ll * S[i + 3] * A[i + 3] % P;
}
NTT(S,n,-1);
while (D--){
l = read(); r = read();
modify(1,1,M,l,r);
if (sum[1] > N) puts("0");
else printf("%d\n",S[sum[1]]);
}
}
return 0;
}

ZOJ3899 State Reversing 【线段树 + NTT】的更多相关文章

  1. [ZOJ3899]State Reversing

    [ZOJ3899]State Reversing 试题描述 Yakumo Yukari is with no doubt one of the most powerful youkai in Gens ...

  2. 【ZOJ3899】State Reversing 解题报告

    [ZOJ3899]State Reversing Description 有\(N\)个不同的怪兽,编号从\(1\) 到\(N\).Yukari有\(M\)个相同的房间,编号为\(1\)到\(M\). ...

  3. 【XSY3306】alpha - 线段树+分治NTT

    题目来源:noi2019模拟测试赛(一) 题意: 题解: 这场三道神仙概率期望题……orzzzy 这题暴力$O(n^2)$有30分,但貌似比正解更难想……(其实正解挺好想的) 注意到一次操作实际上就是 ...

  4. [Codeforces 1199D]Welfare State(线段树)

    [Codeforces 1199D]Welfare State(线段树) 题面 给出一个长度为n的序列,有q次操作,操作有2种 1.单点修改,把\(a_x\)修改成y 2.区间修改,把序列中值< ...

  5. Codeforces - 1199D - Welfare State - 单调栈 / 线段树

    https://codeforc.es/contest/1199/problem/D 其实后来想了一下貌似是个线段树的傻逼题. 单调栈是这样思考的,每次单点修改打上一个最终修改的时间戳.每次全体修改就 ...

  6. 【线段树区间合并】HDU1540-Tunnel Warfare

    一.题目 Description During the War of Resistance Against Japan, tunnel warfare was carried out extensiv ...

  7. 【Codeforces-707D】Persistent Bookcase DFS + 线段树

    D. Persistent Bookcase Recently in school Alina has learned what are the persistent data structures: ...

  8. 【HDU4419 Colourful Rectangle】 线段树面积并

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4419 题目大意:给你n个矩形,每个矩形都有一种颜色,矩形覆盖会出现另外一种颜色,问你所有矩形中不同的颜 ...

  9. JuQueen(线段树 lazy)

    JuQueen Time Limit: 5 Sec  Memory Limit: 512 MB Description Input Output Sample Input 10 10 5 state ...

随机推荐

  1. 让系统识别特殊字符的密码(linux)

    mysql -h主机 -u用户 -p密码 当密码是! @ # 等特殊字符是,linux无法直接识别会报错 这种情况下可以参考以下两种方法: 1.-p后面不写密码,直接回车,再输入密码即可 2.用“\” ...

  2. javascript 强制转换规则 boolean 布尔值类型

    摘自 <你不知道的Javascript(中卷)> p55 一句话简述, 假值表以外的值均可以认为是真值,部分浏览器可能自定义了假值表以外的假值,并不符合W3C规范,需要特殊对待. 首先也是 ...

  3. 三点须知:当我们在开发过程中需要用到分布式缓存Redis的时候

    当我们在开发过程中需要用到分布式缓存Redis的时候,我们首先要明白缓存在系统中用来做什么? 1. 少量数据存储,高速读写访问.通过数据全部in-momery 的方式来保证高速访问,同时提供数据落地的 ...

  4. leetcode12_C++整数转罗马数字

    小弟不才,有错误或者更好解,求留言. 罗马数字包含以下七种字符: I, V, X, L,C,D 和 M. 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如, ...

  5. [线性DP][codeforces-1110D.Jongmah]一道花里胡哨的DP题

    题目来源: Codeforces - 1110D 题意:你有n张牌(1,2,3,...,m)你要尽可能多的打出[x,x+1,x+2] 或者[x,x,x]的牌型,问最多能打出多少种牌 思路: 1.三组[ ...

  6. kNN--近邻算法

    kNN--近邻算法 kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性. 在机器学习中常用于分类. 数学内容: ...

  7. Markdown分级语法手册

    目录 前言(可以不看) 基本语法(18) 1. 标题:# 2. 无序列表:- 3. 有序列表:1. 4. 斜体:* 5. 粗体:** 6. 加粗斜体:*** 7. 删除线:~~ 8. 分隔线:--- ...

  8. ThinkPHP - 6 - 学习笔记(2015.5.4)

    解决:OneThink 站点无法被友言uyan后台识别 打开友言uyan插件功能,但OneThink站点无法被友言uyan后台检测到.页面生成的uyan代码为: <!-- UY BEGIN -- ...

  9. Lucky Conversion(找规律)

    Description Petya loves lucky numbers very much. Everybody knows that lucky numbers are positive int ...

  10. 《Linux内核与分析》第六周

    20135130王川东 1.操作系统的三大管理功能包括:进程管理,内存管理,文件系统. 2. Linux内核通过唯一的进程标识PID来区别每个进程.为了管理进程,内核必须对每个进程进行清晰的描述,进程 ...