题目描述

你有一个m点生命值的奴隶主,奴隶主受伤未死且当前随从数目不超过k则再召唤一个m点生命值的奴隶主。

T次询问,每次询问如果如果对面下出一个n点攻击力的克苏恩,你的英雄期望会受到到多少伤害。

输入

输入第一行包含三个正整数 T,m,k ,T 表示询问组数,m,k 的含义见题目描述。

接下来 T 行,每行包含一个正整数 n ,表示询问进行 n 次攻击后扣减Boss的生命值点数的期望。

输出

输出共 T 行,对于每个询问输出一行一个非负整数,表示该询问的答案对 998244353 取模的结果。

样例输入

3 2 6
1
2
3

样例输出

499122177
415935148
471393168


题解

概率dp+倍增+矩阵乘法

首先需要知道本题弱化版 【bzoj4832】[Lydsy2017年4月月赛]抵制克苏恩 的概率dp写法:不维护期望,只维护概率,统计概率对答案的贡献。设 $p[i][j][k][l]$ 表示 $i$ 回合奴隶主1、2、3血剩余情况为 $j$ 、$k$ 、$l$ 的概率,那么对答案的贡献就是 $\frac {p[i][j][k][l]}{j+k+l+1}$ 。

本题的 $n$ 较大,考虑矩阵乘法。先预处理出状态及转移。然后相当于一个行向量乘以n个方阵,使用快速幂。

但是经过计算可知状态数为 $\sum\limits_{i=0}^kC_{i+m-1}^{m-1}$ ,加上计数器总和最大为166,每次都快速幂复杂度为 $O(T·166^3\log n)$ ,会TLE。

考虑到一个行向量乘以一个方阵的时间时 $O(n^2)$ 的,因此可以倍增预处理出方阵的 $2^i$ 次幂,然后把每个矩阵依次乘到行向量上即可。

时间复杂度 $O(166^3\log n+T·166^2\log n)$

有点卡常。。。

#include <cstdio>
#include <cstring>
#define mod 998244353
typedef long long ll;
int tot = 1;
ll inv(ll x)
{
ll ans = 1 , y = mod - 2;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
struct data
{
ll v[170][170];
data() {memset(v , 0 , sizeof(v));}
ll *operator[](int a) {return v[a];}
data operator*(data &a)
{
data ans;
int i , j , k;
for(i = 1 ; i <= tot ; i ++ )
for(j = 1 ; j <= tot ; j ++ )
for(k = 1 ; k <= tot ; k ++ )
ans[i][j] = (ans[i][j] + v[i][k] * a[k][j]) % mod;
return ans;
}
}A[60];
int f[9][9] , g[9][9][9];
ll ans[170] , tmp[170];
void mul(ll *A , data B)
{
int i , j;
memset(tmp , 0 , sizeof(tmp));
for(i = 1 ; i <= tot ; i ++ )
for(j = 1 ; j <= tot ; j ++ )
tmp[j] = (tmp[j] + A[i] * B[i][j]) % mod;
for(i = 1 ; i <= tot ; i ++ ) A[i] = tmp[i];
}
int main()
{
int T , m , p , i , j , k;
ll n , e;
scanf("%d%d%d" , &T , &m , &p);
A[0][1][1] = A[0][2][1] = A[0][2][2] = 1;
if(m == 1) tot = 3 , A[0][tot][1] = A[0][tot][2] = A[0][tot][3] = inv(2);
else if(m == 2)
{
for(i = 0 ; i <= p ; i ++ )
for(j = 0 ; j <= p ; j ++ )
if(i + j <= p)
f[i][j] = ++tot;
for(i = 0 ; i <= p ; i ++ )
{
for(j = 0 ; j <= p ; j ++ )
{
if(i + j <= p)
{
e = inv(i + j + 1);
A[0][f[i][j]][1] = A[0][f[i][j]][f[i][j]] = e;
if(i) A[0][f[i][j]][f[i - 1][j]] = i * e % mod;
if(j)
{
if(i + j < p) A[0][f[i][j]][f[i + 1][j]] = j * e % mod;
else A[0][f[i][j]][f[i + 1][j - 1]] = j * e % mod;
}
}
}
}
}
else
{
for(i = 0 ; i <= p ; i ++ )
for(j = 0 ; j <= p ; j ++ )
for(k = 0 ; k <= p ; k ++ )
if(i + j + k <= p)
g[i][j][k] = ++tot;
for(i = 0 ; i <= p ; i ++ )
{
for(j = 0 ; j <= p ; j ++ )
{
for(k = 0 ; k <= p ; k ++ )
{
if(i + j + k <= p)
{
e = inv(i + j + k + 1);
A[0][g[i][j][k]][1] = A[0][g[i][j][k]][g[i][j][k]] = e;
if(i) A[0][g[i][j][k]][g[i - 1][j][k]] = i * e % mod;
if(j)
{
if(i + j + k < p) A[0][g[i][j][k]][g[i + 1][j - 1][k + 1]] = j * e % mod;
else A[0][g[i][j][k]][g[i + 1][j - 1][k]] = j * e % mod;
}
if(k)
{
if(i + j + k < p) A[0][g[i][j][k]][g[i][j + 1][k]] = k * e % mod;
else A[0][g[i][j][k]][g[i][j + 1][k - 1]] = k * e % mod;
}
}
}
}
}
}
for(i = 1 ; i < 60 ; i ++ ) A[i] = A[i - 1] * A[i - 1];
while(T -- )
{
scanf("%lld" , &n);
memset(ans , 0 , sizeof(ans));
ans[3] = 1;
for(i = 0 ; i < 60 ; i ++ )
if(n & (1ll << i))
mul(ans , A[i]);
printf("%lld\n" , ans[1]);
}
return 0;
}

【loj2325】「清华集训 2017」小Y和恐怖的奴隶主 概率dp+倍增+矩阵乘法的更多相关文章

  1. LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】

    LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都 ...

  2. LOJ2325「清华集训 2017」小Y和恐怖的奴隶主

    题目链接 首先dp很显然,\(f(i,s)\)表示到了第i轮,各种血量人数的情况为s今后的期望攻击boss次数.那么有\(f(i,s)=\frac{1}{num+1}*\sum_{s->s'}( ...

  3. loj #2325. 「清华集训 2017」小Y和恐怖的奴隶主

    #2325. 「清华集训 2017」小Y和恐怖的奴隶主 内存限制:256 MiB时间限制:2000 ms标准输入输出 题目类型:传统评测方式:文本比较   题目描述 "A fight? Co ...

  4. LibreOJ #2325. 「清华集训 2017」小Y和恐怖的奴隶主(矩阵快速幂优化DP)

    哇这题剧毒,卡了好久常数才过T_T 设$f(i,s)$为到第$i$轮攻击,怪物状态为$s$时对boss的期望伤害,$sum$为状态$s$所表示的怪物个数,得到朴素的DP方程$f(i,s)=\sum \ ...

  5. Loj #2324. 「清华集训 2017」小 Y 和二叉树

    Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上, ...

  6. [LOJ#2324]「清华集训 2017」小Y和二叉树

    [LOJ#2324]「清华集训 2017」小Y和二叉树 试题描述 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙 ...

  7. [LOJ#2323]「清华集训 2017」小Y和地铁

    [LOJ#2323]「清华集训 2017」小Y和地铁 试题描述 小Y是一个爱好旅行的OIer.一天,她来到了一个新的城市.由于不熟悉那里的交通系统,她选择了坐地铁. 她发现每条地铁线路可以看成平面上的 ...

  8. 【UOJ#340】【清华集训2017】小 Y 和恐怖的奴隶主(矩阵快速幂,动态规划)

    [UOJ#340][清华集训2017]小 Y 和恐怖的奴隶主(矩阵快速幂,动态规划) 题面 UOJ 洛谷 题解 考虑如何暴力\(dp\). 设\(f[i][a][b][c]\)表示当前到了第\(i\) ...

  9. loj2324 「清华集训 2017」小 Y 和二叉树

    https://loj.ac/problem/2324 太智障,一开始以为中序遍历的第一个点一定是一个叶子,想了个贪心.然而,手算了一下,第一个点都过不了啊. input 5 2 3 4 1 3 3 ...

随机推荐

  1. 2017-2018-1 20155338《信息安全技术》实验二——Windows口令破解

    2017-2018-1 20155338<信息安全技术>实验二--Windows口令破解 一.试验环境 系统环境:Windows 实验工具: LC5 SuperDic 二.实验内容及要求 ...

  2. day2 RHCE

    1.配置SELINUX 在system1和system2上要求SeLinux的状态为enforcing.要求系统重启后依然生效. server [root@server0 ~]# getenforce ...

  3. 图论-最短路径 2.Dijkstra算法O (N2)

    2.Dijkstra算法O (N2) 用来计算从一个点到其他所有点的最短路径的算法,是一种单源最短路径算法.也就是说,只能计算起点只有一个的情况. Dijkstra的时间复杂度是O (N2),它不能处 ...

  4. EmitMapper自动映射工具

             在实体与DTO之间,我们一般都需要进行映射.如果手动的来进行转换,实在是太麻烦.所以就产生了很多映射工具,比如AutoMapper,EmitMapper.而经过一些对比,EmitMa ...

  5. 深入解析QML引擎, 第1部分:QML文件加载

    译者注:这个解析QML引擎的文章共4篇,分析非常透彻,在国内几乎没有找到类似的分析,为了便于国内的QT/QML爱好者和工作者也能更好的学习和理解QML引擎,故将这个系列的4篇文章翻译过来.翻译并不是完 ...

  6. 我们一起学习WCF 第一篇初识WCF(附源码供对照学习)

    前言:去年由于工作需要我学习了wcf的相关知识,初期对wcf的作用以及为何用怎么样都是一知半解,也许现在也不是非常的清晰.但是通过项目对wcf的运用在脑海里面也算有了初步的模型.今天我就把我从开始wc ...

  7. Android 不同分辨率下调整界面

    Android Settings中有修改Disaply size的界面,通过修改Display size,能够修改屏幕分辨率. 由于修改了屏幕分辨率,有可能导致同一界面在不同的分辨率下显示出错(内容显 ...

  8. 关闭会声会影2018提示UEIP.dll找不到指定模块

    最近有一些会声会影2018用户反映在关闭后弹出UEIP.dll错误,不知道该怎么办才好,针对这个问题,小编下面为大家介绍下解决方法. 原因分析 出现这个错误跟会声会影安装路径有中文字符是密切相关的,导 ...

  9. Linux内核学习笔记(5)-- 进程调度概述

    进程调度程序是多任务操作系统的基础,它是确保进程能有效工作的一个内核子系统,负责决定哪个进程投入运行.何时运行以及运行多长时间.只有通过进程调度程序的合理调度,系统资源才能够最大限度地发挥作用,多进程 ...

  10. AngularJS - 路由 routing 基础示例

    AngularJS 路由 routing 能够从页面的一个视图跳转到另外一个视图,对单页面应用来讲是至关重要的.当应用变得越来越复杂时,我们需要一个合理的方式来管理用户在使用过程中看到的界面.Angu ...