J - 猪的安家

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d
& %I64u

Description

Andy和Mary养了很多猪。他们想要给猪安家。但是Andy没有足够的猪圈,很多猪只能够在一个猪圈安家。举个例子,假如有16头猪,Andy建了3个猪圈,为了保证公平,剩下1头猪就没有地方安家了。Mary生气了,骂Andy没有脑子,并让他重新建立猪圈。这回Andy建造了5个猪圈,但是仍然有1头猪没有地方去,然后Andy又建造了7个猪圈,但是还有2头没有地方去。Andy都快疯了。你对这个事情感兴趣起来,你想通过Andy建造猪圈的过程,知道Andy家至少养了多少头猪。

Input

输入包含多组测试数据。每组数据第一行包含一个整数n (n <= 10) – Andy建立猪圈的次数,解下来n行,每行两个整数ai, bi( bi <= ai <= 1000), 表示Andy建立了ai个猪圈,有bi头猪没有去处。你可以假定(ai, aj) = 1.

Output

输出包含一个正整数,即为Andy家至少养猪的数目。

Sample Input

3
3 1
5 1
7 2

Sample Output

16

解题:

先求出最小满足第一行的,如例题中3+1=4,再验证是否符合第二行。4%5!=1,所以再把4递加3,直到(4+3*x)%5==1。继续验证下一行,不过递加要变为3和5的最小公倍数,一直循环到n,最后的总的最小公倍数即是答案。

注意:1长度的限制,在OJ上,__int64 of VC is not ANSI, but you can use long long for 64-bit integer。本题要用long
long

注意:2 注意只有一组输入的情况 这样每个猪圈都是没猪的

#include<iostream>
using namespace std;
int n;
long long a[11],b[11];
long long gcd[11];
void getgcd(){
gcd[1]=a[1];
for(int t=2;t<=n;t++){
long long x=gcd[t-1],y=a[t],z;
while(1){
z=x%y;
if(z==0){
gcd[t]=gcd[t-1]*a[t]/y;
break;
}
x=y;
y=z; }
} } int main(){ long long sum;//记得都用long long 用long也会错
while(cin>>n){
sum=0;
for(int i=1;i<=n;i++){
cin>>a[i]>>b[i];
}
getgcd();
sum=b[1];//注意这里 如果换成<span style="font-family: Arial, Helvetica, sans-serif;">sum=a[1]+b[1]就会错因为可能是一组的情况那么就是输出b[1]</span>
for(int j=1;j<=n;j++){ while(1){ if(sum%a[j]==b[j])break;
else sum+=gcd[j-1];
}
}
cout<<sum<<endl;
}
return 0;
}

另外一个:思路一样

#include<iostream>
using namespace std;
int main()
{
long long int n,a,b,c,d,i;
while(cin>>n)
{
cin>>a>>b;
//b=b+a;
for(i=1;i<n;i++)
{ cin>>c>>d;
while(b%c!=d)
b+=a;
a*=c;
}
cout<<b<<endl;
}
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

中国剩余定理---FZU 1402 猪的安家的更多相关文章

  1. fzu 1402 猪的安家 (中国剩余定理)

     Problem 1402 猪的安家 Accept: 897    Submit: 5642Time Limit: 1000 mSec    Memory Limit : 32768 KB  Prob ...

  2. 中国剩余定理的应用:猪的安家 ->福州大学 OJ

                                                                     Problem 1402 猪的安家 Accept: 984    Su ...

  3. 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理

    [bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...

  4. BZOJ1951 [Sdoi2010]古代猪文 【费马小定理 + Lucas定理 + 中国剩余定理 + 逆元递推 + 扩展欧几里得】

    题目 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那 ...

  5. [SDOI2010] 古代猪文 (快速幂+中国剩余定理+欧拉定理+卢卡斯定理) 解题报告

    题目链接:https://www.luogu.org/problemnew/show/P2480 题目背景 “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色 ...

  6. BZOJ1951 [Sdoi2010]古代猪文 中国剩余定理 快速幂 数论

    原文链接http://www.cnblogs.com/zhouzhendong/p/8109156.html 题目传送门 - BZOJ1951 题意概括 求 GM mod 999911659 M=∑i ...

  7. BZOJ 1951 [SDOI2010]古代猪文 (组合数学+欧拉降幂+中国剩余定理)

    题目大意:求$G^{\sum_{m|n} C_{n}^{m}}\;mod\;999911659\;$的值$(n,g<=10^{9})$ 并没有想到欧拉定理.. 999911659是一个质数,所以 ...

  8. 【vijos】1164 曹冲养猪(中国剩余定理)

    https://vijos.org/p/1164 好赞orz. 对于求一组线性同余方程 x=a[i](mod m[i]) 这里任意两个m[i]和m[j]都互质 那么可以用中国剩余定理来做. 对中国剩余 ...

  9. Vijos 1164 曹冲养猪(中国剩余定理)

    P1164曹冲养猪 Accepted 标签:三国争霸[显示标签] 描写叙述 自从曹冲搞定了大象以后,曹操就開始捉摸让儿子干些事业,于是派他到中原养猪场养猪,但是曹冲满不高兴.于是在工作中马马虎虎,有一 ...

随机推荐

  1. css动画Demo---水波动画和边框动画

    先上效果图: 水波动画: 边框动画: 1.水波动画 实现代码 <!DOCTYPE html> <html lang="en"> <head> & ...

  2. CentOS6安装各种大数据软件 第一章:各个软件版本介绍

    相关文章链接 CentOS6安装各种大数据软件 第一章:各个软件版本介绍 CentOS6安装各种大数据软件 第二章:Linux各个软件启动命令 CentOS6安装各种大数据软件 第三章:Linux基础 ...

  3. openssl windows 下 编译 bat

    ++++全部++++++++ @echo offrem set sslpath=C:\0openssl\rem echo %sslpath% set X86_lib=C:\0openssl\32\li ...

  4. postgres-xl 安装与部署 【异常处理】ERROR: could not open file (null)/STDIN_***_0 for write, No such file or directory

    https://www.jianshu.com/p/82aaf352b772 这篇文章很不错,里面有个bug,可能是版本不对. 当前(2018-04-11)通过git 下载原代码时,在配置  pgxc ...

  5. 20155215 《Java程序设计》实验一(Java开发环境的熟悉)实验报告

    20155215 <Java程序设计>实验一(Java开发环境的熟悉)实验报告 实验要求 1.没有Linux基础的同学建议先学习<Linux基础入门(新版)><Vim编辑 ...

  6. day 1类 对象 属性 方法

    1. 解决吃啤酒鸭的问题 第一种方式(面向过程): 1)养鸭子 2)鸭子长成 3)杀 4)作料 5)烹饪 6)吃 7)卒 第二种方式(面向对象): 1)找个卖啤酒鸭的人 2)给钱 交易 3)吃 4)胖 ...

  7. 【洛谷P2245】星际导航

    题面 题解 \(kruskal\)重构树板子题??(大雾 因为重构树上两点之间的\(LCA\)的权值就是原图上最小生成树上的瓶颈. 所以建个重构树,跑\(LCA\)即可. 代码 #include< ...

  8. 【BZOJ3144】[HNOI2013]切糕

    [BZOJ3144][HNOI2013]切糕 题面 题目描述 经过千辛万苦小 A 得到了一块切糕,切糕的形状是长方体,小 A 打算拦腰将切糕切成两半分给小 B.出于美观考虑,小 A 希望切面能尽量光滑 ...

  9. node升级7.0以上版本使用gulp时报错

    今天使用gulp时 ,出现了以下报错信息: Error: Cannot find module 'internal/fs'at Object.<anonymous> (/home/XXX/ ...

  10. Windows下Mongo分片及集群

    这里简单介绍一下windows下mongodb的分片设置和集群搭建,希望能够为迷茫的新手起到一点点作用.其实windows下与linux下思路是一致的,只是绑定时的ip,与端口号不同,linux下可以 ...