CSV模块

1、CSV文件格式

  要在文本文件中存储数据,最简单的方式是讲数据作为一系列逗号分隔的值(CSV)写入文件,这样的文件成为CSV文件,如下:

AKDT,Max TemperatureF,Mean TemperatureF,Min TemperatureF,Max Dew PointF,MeanDew PointF,Min DewpointF,Max Humidity, Mean Humidity, Min Humidity, Max Sea Level PressureIn, Mean Sea Level PressureIn, Min Sea Level PressureIn, Max VisibilityMiles, Mean VisibilityMiles, Min VisibilityMiles, Max Wind SpeedMPH, Mean Wind SpeedMPH, Max Gust SpeedMPH,PrecipitationIn, CloudCover, Events, WindDirDegrees
2014-7-1,64,56,50,53,51,48,96,83,58,30.19,30.00,29.79,10,10,10,7,4,,0.00,7,,337
2014-7-2,71,62,55,55,52,46,96,80,51,29.81,29.75,29.66,10,9,2,13,5,,0.14,7,Rain,327
2014-7-3,64,58,53,55,53,51,97,85,72,29.88,29.86,29.81,10,10,8,15,4,,0.01,6,,258
2014-7-4,59,56,52,52,51,50,96,88,75,29.91,29.89,29.87,10,9,2,9,2,,0.07,7,Rain,255
2014-7-5,69,59,50,52,50,46,96,72,49,29.88,29.82,29.79,10,10,10,13,5,,0.00,6,,110
2014-7-6,62,58,55,51,50,46,80,71,58,30.13,30.07,29.89,10,10,10,20,10,29,0.00,6,Rain,213
2014-7-7,61,57,55,56,53,51,96,87,75,30.10,30.07,30.05,10,9,4,16,4,25,0.14,8,Rain,211
2014-7-8,55,54,53,54,53,51,100,94,86,30.10,30.06,30.04,10,6,2,12,5,23,0.84,8,Rain,159
2014-7-9,57,55,53,56,54,52,100,96,83,30.24,30.18,30.11,10,7,2,9,5,,0.13,8,Rain,201
2014-7-10,61,56,53,53,52,51,100,90,75,30.23,30.17,30.03,10,8,2,8,3,,0.03,8,Rain,215
2014-7-11,57,56,54,56,54,51,100,94,84,30.02,30.00,29.98,10,5,2,12,5,,1.28,8,Rain,250
2014-7-12,59,56,55,58,56,55,100,97,93,30.18,30.06,29.99,10,6,2,15,7,26,0.32,8,Rain,275
2014-7-13,57,56,55,58,56,55,100,98,94,30.25,30.22,30.18,10,5,1,8,4,,0.29,8,Rain,291
2014-7-14,61,58,55,58,56,51,100,94,83,30.24,30.23,30.22,10,7,0,16,4,,0.01,8,Fog,307
2014-7-15,64,58,55,53,51,48,93,78,64,30.27,30.25,30.24,10,10,10,17,12,,0.00,6,,318
2014-7-16,61,56,52,51,49,47,89,76,64,30.27,30.23,30.16,10,10,10,15,6,,0.00,6,,294
2014-7-17,59,55,51,52,50,48,93,84,75,30.16,30.04,29.82,10,10,6,9,3,,0.11,7,Rain,232
2014-7-18,63,56,51,54,52,50,100,84,67,29.79,29.69,29.65,10,10,7,10,5,,0.05,6,Rain,299
2014-7-19,60,57,54,55,53,51,97,88,75,29.91,29.82,29.68,10,9,2,9,2,,0.00,8,,292
2014-7-20,57,55,52,54,52,50,94,89,77,29.92,29.87,29.78,10,8,2,13,4,,0.31,8,Rain,155
2014-7-21,69,60,52,53,51,50,97,77,52,29.99,29.88,29.78,10,10,10,13,4,,0.00,5,,297
2014-7-22,63,59,55,56,54,52,90,84,77,30.11,30.04,29.99,10,10,10,9,3,,0.00,6,Rain,240
2014-7-23,62,58,55,54,52,50,87,80,72,30.10,30.03,29.96,10,10,10,8,3,,0.00,7,,230
2014-7-24,59,57,54,54,52,51,94,84,78,29.95,29.91,29.89,10,9,3,17,4,28,0.06,8,Rain,207
2014-7-25,57,55,53,55,53,51,100,92,81,29.91,29.87,29.83,10,8,2,13,3,,0.53,8,Rain,141
2014-7-26,57,55,53,57,55,54,100,96,93,29.96,29.91,29.87,10,8,1,15,5,24,0.57,8,Rain,216
2014-7-27,61,58,55,55,54,53,100,92,78,30.10,30.05,29.97,10,9,2,13,5,,0.30,8,Rain,213
2014-7-28,59,56,53,57,54,51,97,94,90,30.06,30.00,29.96,10,8,2,9,3,,0.61,8,Rain,261
2014-7-29,61,56,51,54,52,49,96,89,75,30.13,30.02,29.95,10,9,3,14,4,,0.25,6,Rain,153
2014-7-30,61,57,54,55,53,52,97,88,78,30.31,30.23,30.14,10,10,8,8,4,,0.08,7,Rain,160
2014-7-31,66,58,50,55,52,49,100,86,65,30.31,30.29,30.26,10,9,3,10,4,,0.00,3,,217

sitka_weather_07-2014.csv

2、取CSV数据绘制气温图表

① 创建highs_lows.py读取数据第一行:

import csv

filename = 'sitka_weather_07-2014.csv'
with open(filename,'r') as f:
reader = csv.reader(f) # 生成阅读器,f对象传入
header_row = next(reader) # 查看文件第一行,reader是可迭代对象
print(header_row) # 列表格式 # ['AKDT', 'Max TemperatureF', 'Mean TemperatureF', 'Min TemperatureF',
# 'Max Dew PointF', 'MeanDew PointF', 'Min DewpointF', 'Max Humidity',
# ' Mean Humidity', ' Min Humidity', ' Max Sea Level PressureIn',
# ' Mean Sea Level PressureIn', ' Min Sea Level PressureIn',
# ' Max VisibilityMiles', ' Mean VisibilityMiles', ' Min VisibilityMiles',
# ' Max Wind SpeedMPH', ' Mean Wind SpeedMPH', ' Max Gust SpeedMPH',
# 'PrecipitationIn', ' CloudCover', ' Events', ' WindDirDegrees']

② 修改highs_lows.py文件获取每日最高温度

import csv

filename = 'sitka_weather_07-2014.csv'
with open(filename,'r') as f:
reader = csv.reader(f) # 生成阅读器,f对象传入
header_row = next(reader) # 查看文件第一行,reader是可迭代对象 highs = []
for row in reader:
high = int(row[1])
highs.append(high)
print(highs) # [64, 71, 64, 59, 69, 62, 61, 55, 57, 61, 57, 59, 57, 61,
# 64, 61, 59, 63, 60, 57, 69, 63, 62, 59, 57, 57, 61, 59, 61,61, 66]

③ 根据数据绘制气温图表

import csv
import matplotlib.pyplot as plt filename = 'sitka_weather_07-2014.csv'
with open(filename,'r') as f:
reader = csv.reader(f) # 生成阅读器,f对象传入
header_row = next(reader) # 查看文件第一行,reader是可迭代对象 highs = []
for row in reader:
high = int(row[1])
highs.append(high) # 设置图片大小
fig = plt.figure(dpi=128,figsize=(10,6))
plt.plot(highs, c='red',linewidth=1) # 设置颜色、线条粗细 # 设置图片格式
plt.title('Daily high temperatures,July 2014', fontsize=24) # 标题
plt.xlabel('', fontsize=14)
plt.ylabel('Temperature(F)', fontsize=14) plt.show() # 输出图像

绘图:

④ X轴改为时间日期

import csv
import matplotlib.pyplot as plt
from datetime import datetime filename = 'sitka_weather_07-2014.csv'
with open(filename,'r') as f:
reader = csv.reader(f) # 生成阅读器,f对象传入
header_row = next(reader) # 查看文件第一行,reader是可迭代对象 dates,highs = [],[]
for row in reader:
current_date = datetime.strptime(row[0],'%Y-%m-%d')
dates.append(current_date)
high = int(row[1])
highs.append(high) # 设置图片大小
fig = plt.figure(dpi=128,figsize=(10,6))
plt.plot(dates,highs, c='red',linewidth=1) # linewidth决定绘制线条的粗细 # 设置图片格式
plt.title('Daily high temperatures,July 2014', fontsize=20) # 标题
plt.xlabel('', fontsize=14)
fig.autofmt_xdate() # 日期标签转为斜体
plt.ylabel('Temperature(F)', fontsize=14)
plt.tick_params(axis='both',which='major')
plt.show() # 输出图像

绘图:

⑤ 添加低温数据,填充折线区域

import csv
import matplotlib.pyplot as plt
from datetime import datetime filename = 'sitka_weather_2014.csv'
with open(filename,'r') as f:
reader = csv.reader(f) # 生成阅读器,f对象传入
header_row = next(reader) # 查看文件第一行,reader是可迭代对象 # 获取日期,最高温度,最低温度
dates,highs,lows = [],[],[]
for row in reader:
try:
current_date = datetime.strptime(row[0],'%Y-%m-%d')
high = int(row[1])
low = int(row[3])
except ValueError:
print(current_date,'missing data')
else:
dates.append(current_date)
highs.append(high)
lows.append(low) # 设置图片大小
fig = plt.figure(dpi=128,figsize=(10,6))
plt.plot(dates,highs, c='red',alpha=0.5) # 最高温度 alpha透明度0完全透明,1表示完全不透明
plt.plot(dates,lows, c='blue',alpha=0.5) # 最低温度
plt.fill_between(dates,highs,lows,facecolor='blue',alpha=0.1) #填充色 # 设置图片格式
plt.title('Daily high temperatures - 2014', fontsize=20) # 标题
plt.xlabel('', fontsize=14)
fig.autofmt_xdate() # 日期标签转为斜体
plt.ylabel('Temperature(F)', fontsize=14)
plt.tick_params(axis='both',which='major')
plt.show() # 输出图像

绘图:

Python开发【模块】:CSV文件 数据可视化的更多相关文章

  1. [Python]-pandas模块-CSV文件读写

    Pandas 即Python Data Analysis Library,是为了解决数据分析而创建的第三方工具,它不仅提供了丰富的数据模型,而且支持多种文件格式处理,包括CSV.HDF5.HTML 等 ...

  2. python之模块csv之CSV文件一次写入多行

    # -*- coding: utf-8 -*- #python 27 #xiaodeng #CSV文件一次写入多行 import csv #csv文件,是一种常用的文本格式,用以存储表格数据,很多程序 ...

  3. python之模块csv之CSV文件的写入(基本结构)

    # -*- coding: utf-8 -*- #python 27 #xiaodeng #CSV文件的写入(基本结构) import csv #csv文件,是一种常用的文本格式,用以存储表格数据,很 ...

  4. python之模块csv之CSV文件的写入(按行写入)

    # -*- coding: utf-8 -*- #python 27 #xiaodeng #CSV文件的写入(按行写入) import csv #csv文件,是一种常用的文本格式,用以存储表格数据,很 ...

  5. Python调用matplotlib实现交互式数据可视化图表案例

    交互式的数据可视化图表是 New IT 新技术的一个应用方向,在过去,用户要在网页上查看数据,基本的实现方式就是在页面上显示一个表格出来,的而且确,用表格的方式来展示数据,显示的数据量会比较大,但是, ...

  6. python实现的电影票房数据可视化

    代码地址如下:http://www.demodashi.com/demo/14275.html 详细说明: Tushare是一个免费.开源的python财经数据接口包.主要实现对股票等金融数据从数据采 ...

  7. CSV文件数据如何读取、导入、导出到新的CSV文件中以及CSV文件的创建

    CSV文件数据如何读取.导入.导出到新的CSV文件中以及CSV文件的创建 一.csv文件的创建 (1)新建一个文本文档: 打开新建文本文档,进行编辑. 注意:关键字与关键字之间用英文半角逗号隔开.第一 ...

  8. python中操作csv文件

    python中操作csv文件 读取csv improt csv f = csv.reader(open("文件路径","r")) for i in f: pri ...

  9. java读取目录下所有csv文件数据,存入三维数组并返回

    package dwzx.com.get; import java.io.BufferedReader; import java.io.File; import java.io.FileReader; ...

随机推荐

  1. circRNA 序列提取中的难点

    在预测circRNA时,都是检测breakpoint 处的reads 数,最后给出的环状RNA的ID 都是诸如 chr14:106994222-107183708 这样的形式,给出了起始和终止位置: ...

  2. js 自函数

    函数基本概念: 函数声明:function box(){} 函数表达式:var box = function(){}; 匿名函数:function(){} 属于函数表达式 匿名函数的作用:如果将匿名函 ...

  3. 基于Bootstrap使用jQuery实现输入框组input-group的添加与删除-改进版

    上一次说到了基于Bootstrap使用jQuery实现输入框组input-group的添加与删除 ,初始状态下只有一个输入框组,可以通过点击输入框组的右侧“+”(或自定义的文字)可以在原输入框组的下面 ...

  4. BleedTree动画混合树

    通过Unity动画状态机,能帮我们轻松处理转换各个动画片断,达到想要的效果,但是如果仅仅是一个个动画的硬生生的切换,那么看起来就非常突然,而不真实了,在质量要求比较高的游戏中,特别是动作游戏,我们就不 ...

  5. Page与Loaded

    When navigate to page, loaded event will be triggered. Back to page, loaded event will be triggered ...

  6. 【java】java内存模型(2)--volatile内存语义详解

    多线程并发编程中synchronized和Volatile都扮演着重要的角色,Volatile是轻量级的synchronized,它在多处理器开发中保证了共享变量的“可见性”.可见性的意思是当一个线程 ...

  7. Tcp/ip实验准备:一个简单的定时器——boost实现

    tcp/ip实验须要在指定的时间查看结果,为了实验方便,做了一个定时器.用法是: 在命令行输入:timer 输入数字之后,计时对应秒数 输入m数字之后.计时对应分钟数(支持小数分钟数) 输入q退出. ...

  8. python2.0_day18_django_form

    Django formDjango admin 为什么要讲form,Django里的form能做什么. 前面day16节 简单学习了Django admin,我们知道当我们的models在admin. ...

  9. shell基础篇(一)从hello world开始

    前记:这里是我做的shell笔记:接下来会提供一系列. Shell是一种脚本语言,那么,就必须有解释器来执行这些脚本.Unix/Linux上常见的Shell脚本解释器有bash.sh.csh.ksh等 ...

  10. cut的用法【转】

    cut是一个选取命令,就是将一段数据经过分析,取出我们想要的.一般来说,选取信息通常是针对“行”来进行分析的,并不是整篇信息分析的. (1)其语法格式为:cut  [-bn] [file] 或 cut ...