题目

真是一道好题

首先根据一个非常显然的贪心,如果给出了一个串\(S\),我们如何算最小操作次数呢

非常简单,我们直接把\(S\)拉到\(T\)的\(SAM\)上去跑,如果跑不动了就停下来,重新回到\(1\)继续跑

于是我们建出一个\(SAM\)之后可以写一个这样的暴力,设\(d[i][j][k]\)表示从\(i\)点到\(j\)点走\(i\)条边的最长路,对于那些走不动的边,我们可以接到\(1\)号节点对应的出边上去,边权为\(1\),其余的边权为\(0\),矩阵优化一下就是\(O(|T|^3logn)\)的复杂度

显然\(|T|\)并不允许我们开下如此之大的转移矩阵,尝试换一个角度来考虑这个问题

我们发现我们问题的本质就是最大化最小值,这是不是可以二分一下呢

于是现在的问题变成了对于一个二分出的操作次数\(mid\),判断答案是否能够更大

显然我们如果使用\(mid\)此操作构造出来的串长度小于\(n\),那么我们就可以断定答案可能会更大一些

于是又把问题转化成了利用\(mid\)次操作构造出来的字符串的最小长度

这个如何求呢,我们考虑一次操作无非就是从\(1\)的某一个出边指向的节点到另一个\(1\)的出边指向的节点,所以我们求出这些节点两两之间的最短路就好了

于是我们现在又可以利用矩阵转移了,复杂度\(O(|T|+|c|^3log^2n)\),\(|c|\)为字符集大小

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define LL long long
#define re register
#define inf 922337203685477580
#define maxn 200005
LL n;
char S[maxn>>1];
int m,lst=1,cnt=1,tot;
int len[maxn],fa[maxn],son[maxn][4],q[maxn],vis[maxn],c[maxn];
LL a[4][4],ans[4][4],t[4][4],d[maxn];
inline void ins(int c) {
int p=++cnt,f=lst;lst=p;
len[p]=len[f]+1;
while(f&&!son[f][c]) son[f][c]=p,f=fa[f];
if(!f) {fa[p]=1;return;}
int x=son[f][c];
if(len[f]+1==len[x]) {fa[p]=x;return;}
int y=++cnt;len[y]=len[f]+1;
fa[y]=fa[x],fa[x]=fa[p]=y;
son[y][0]=son[x][0];son[y][1]=son[x][1];
son[y][2]=son[x][2];son[y][3]=son[x][3];
while(f&&son[f][c]==x) son[f][c]=y,f=fa[f];
}
inline void did_t() {
LL mid[4][4];
for(re int i=0;i<4;i++)
for(re int j=0;j<4;j++) mid[i][j]=t[i][j],t[i][j]=inf;
for(re int k=0;k<4;k++)
for(re int i=0;i<4;i++)
for(re int j=0;j<4;j++)
t[i][j]=min(t[i][j],mid[i][k]+mid[k][j]);
}
inline void did_ans() {
LL mid[4][4];
for(re int i=0;i<4;i++)
for(re int j=0;j<4;j++) mid[i][j]=ans[i][j],ans[i][j]=inf;
for(re int k=0;k<4;k++)
for(re int i=0;i<4;i++)
for(re int j=0;j<4;j++)
ans[i][j]=min(ans[i][j],mid[i][k]+t[k][j]);
}
inline LL solve(LL now) {
for(re int i=0;i<4;i++)
for(re int j=0;j<4;j++) t[i][j]=a[i][j],ans[i][i]=inf;
for(re int i=0;i<4;i++) ans[i][i]=0;
LL b=now;
while(now) {if(now&1ll) did_ans();now>>=1ll;did_t();}
LL tmp=inf;
for(re int i=0;i<4;i++)
for(re int j=0;j<4;j++) tmp=min(tmp,ans[i][j]);
return tmp+b;
}
inline int check(LL now) {return solve(now)<=n;}
int main() {
scanf("%lld",&n);scanf("%s",S+1);m=strlen(S+1);
for(re int i=1;i<=m;i++) ins(S[i]-'A');
for(re int i=0;i<4;i++)
for(re int j=0;j<4;j++) a[i][j]=inf;
for(re int i=0;i<4;i++) {
tot=0;q[++tot]=son[1][i];
memset(vis,0,sizeof(vis));
memset(d,20,sizeof(d));d[q[1]]=0;
for(re int j=1;j<=tot;j++) {
int x=q[j];
for(re int k=0;k<4;k++) {
if(vis[son[x][k]]) continue;
if(!son[x][k]) a[i][k]=min(a[i][k],d[x]);
else vis[son[x][k]]=1,d[son[x][k]]=d[x]+1,q[++tot]=son[x][k];
}
}
}
LL l=1,r=n,ans=0;
while(l<=r) {
LL mid=l+r>>1ll;
if(check(mid)) l=mid+1,ans=mid;
else r=mid-1;
}
if(solve(ans)<n) ans++;
printf("%lld\n",ans);
return 0;
}

「bzoj 4180: 字符串计数」的更多相关文章

  1. bzoj 4180: 字符串计数

    Description SD有一名神犇叫做Oxer,他觉得字符串的题目都太水了,于是便出了一道题来虐蒟蒻yts1999. 他给出了一个字符串T,字符串T中有且仅有4种字符 'A', 'B', 'C', ...

  2. BZOJ 4180: 字符串计数 后缀自动机 + 矩阵乘法 + 二分(神题)

    Description SD有一名神犇叫做Oxer,他觉得字符串的题目都太水了,于是便出了一道题来虐蒟蒻yts1999.   他给出了一个字符串T,字符串T中有且仅有4种字符 'A', 'B', 'C ...

  3. BZOJ.4180.字符串计数(后缀自动机 二分 矩阵快速幂/倍增Floyd)

    题目链接 先考虑 假设S确定,使构造S操作次数最小的方案应是:对T建SAM,S在SAM上匹配,如果有S的转移就转移,否则操作数++,回到根节点继续匹配S.即每次操作一定是一次极大匹配. 简单证明:假设 ...

  4. 【BZOJ 4180】 4180: 字符串计数 (SAM+二分+矩阵乘法)

    4180: 字符串计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 164  Solved: 75 Description SD有一名神犇叫做Oxe ...

  5. 【BZOJ-4180】字符串计数 后缀自动机 + 矩阵乘法

    4180: 字符串计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 146  Solved: 66[Submit][Status][Discuss] ...

  6. 「BZOJ 2534」 L - gap字符串

    「BZOJ 2534」 L - gap字符串 题目描述 有一种形如 \(uv u\) 形式的字符串,其中 \(u\) 是非空字符串,且 \(v\) 的长度正好为 \(L\), 那么称这个字符串为 \( ...

  7. 「BZOJ 4502」串

    「BZOJ 4502」串 题目描述 兔子们在玩字符串的游戏.首先,它们拿出了一个字符串集合 \(S\),然后它们定义一个字符串为"好"的,当且仅当它可以被分成非空的两段,其中每一段 ...

  8. 「BZOJ 4228」Tibbar的后花园

    「BZOJ 4228」Tibbar的后花园 Please contact lydsy2012@163.com! 警告 解题思路 可以证明最终的图中所有点的度数都 \(< 3\) ,且不存在环长是 ...

  9. 「BZOJ 3645」小朋友与二叉树

    「BZOJ 3645」小朋友与二叉树 解题思路 令 \(G(x)\) 为关于可选大小集合的生成函数,即 \[ G(x)=\sum[i\in c ] x^i \] 令 \(F(x)\) 第 \(n\) ...

随机推荐

  1. 关于键盘KeyDown事件

    if (e.KeyValue==13) //如果键盘的值等于13 这里面的13是enter键 textBox2.Focus(); //焦点就跑到textbox2上面

  2. linux 图解常用的云运维监控工具

    随着新技术的不断发展,云服务已经互联网企业的必须,但是长期以来会存在传统物理主机和云主机.私有云和公有云并存的状态.此外,互联网企业的发展速度非常快,小米.滴滴出行等很多企业都是在短短几年内发展起来的 ...

  3. 一:SpringCloud

    一:前提知识+相关说明 前提知识:springmvc+spring/springboot+mybatis+maven+git...... cloud技术的五大神兽: 面试题: 什么是微服务? 微服务之 ...

  4. Java实现进程调度算法(二) RR(时间片轮转)

    一.概述 因为这次os作业对用户在控制台的输入输出有要求,所以我花了挺多的代码来完善控制台的显示. 也因为我这次要实现多个类似算法,所以将一些共性单独提取出来作为一个类. 如果只想要和算法有关的核心代 ...

  5. SSM maven框架下载简易版

    1.前台一个a标签,写个地址就行了 例如 <a href="${pageContext.request.contextPath}/fileDownLoad">前去下载& ...

  6. 阿里巴巴的数据池DRUID

      使用了阿里巴巴的数据池管理: 监控DB池连接和SQL的执行情况 https://github.com/alibaba/druid/wiki/常见问题 https://www.cnblogs.com ...

  7. 解决WCF跨机器调用时发生“调用方未由服务进行身份验证”的错误

    1.服务器端Web.config配置文件,增加如下部分: <system.serviceModel> <bindings> <wsHttpBinding> < ...

  8. lambda 表达式学习笔记

    在Java中传递一个代码段并不容易,不能直接传递代码段.Java是一个面向对象语言,所以必须构造一个对象,这个对象的类需要一个方法能包含所需的代码.lambda的出现有效的解决这个问题,让代码变得更加 ...

  9. Tinymce 编辑器添加自定义图片管理插件

    在使用Tinymce的过程中需要用到图片上传功能,而提供的上传插件在上传文件后是给了一个连接地址,就想用户需要什么图片,不能用最直观的方式表现出来么! 虽然官网上也有一个文件管理的插件moxieman ...

  10. 关于npm构建angular2项目问题

    我在win10系统下用npm构建好angular2项目之后,在命令行下运行 ng serve --open,报一下错误: Unknown browser query 'basedir=$(dirnam ...