Symbol

Symbol

概述

ES5 的对象属性名都是字符串,这容易造成属性名的冲突。比如,你使用了一个他人提供的对象,但又想为这个对象添加新的方法(mixin 模式),新方法的名字就有可能与现有方法产生冲突。如果有一种机制,保证每个属性的名字都是独一无二的就好了,这样就从根本上防止属性名的冲突。这就是 ES6 引入Symbol的原因。

ES6 引入了一种新的原始数据类型Symbol,表示独一无二的值。它是 JavaScript 语言的第七种数据类型,前六种是:undefinednull、布尔值(Boolean)、字符串(String)、数值(Number)、对象(Object)。

Symbol 值通过Symbol函数生成。这就是说,对象的属性名现在可以有两种类型,一种是原来就有的字符串,另一种就是新增的 Symbol 类型。凡是属性名属于 Symbol 类型,就都是独一无二的,可以保证不会与其他属性名产生冲突。

let s = Symbol();

typeof s
// "symbol"

上面代码中,变量s就是一个独一无二的值。typeof运算符的结果,表明变量s是 Symbol 数据类型,而不是字符串之类的其他类型。

注意,Symbol函数前不能使用new命令,否则会报错。这是因为生成的 Symbol 是一个原始类型的值,不是对象。也就是说,由于 Symbol 值不是对象,所以不能添加属性。基本上,它是一种类似于字符串的数据类型。

Symbol函数可以接受一个字符串作为参数,表示对 Symbol 实例的描述,主要是为了在控制台显示,或者转为字符串时,比较容易区分。

let s1 = Symbol('foo');
let s2 = Symbol('bar'); s1 // Symbol(foo)
s2 // Symbol(bar) s1.toString() // "Symbol(foo)"
s2.toString() // "Symbol(bar)"

上面代码中,s1s2是两个 Symbol 值。如果不加参数,它们在控制台的输出都是Symbol(),不利于区分。有了参数以后,就等于为它们加上了描述,输出的时候就能够分清,到底是哪一个值。

如果 Symbol 的参数是一个对象,就会调用该对象的toString方法,将其转为字符串,然后才生成一个 Symbol 值。

const obj = {
toString() {
return 'abc';
}
};
const sym = Symbol(obj);
sym // Symbol(abc)

注意,Symbol函数的参数只是表示对当前 Symbol 值的描述,因此相同参数的Symbol函数的返回值是不相等的。

// 没有参数的情况
let s1 = Symbol();
let s2 = Symbol(); s1 === s2 // false // 有参数的情况
let s1 = Symbol('foo');
let s2 = Symbol('foo'); s1 === s2 // false

上面代码中,s1s2都是Symbol函数的返回值,而且参数相同,但是它们是不相等的。

Symbol 值不能与其他类型的值进行运算,会报错。

let sym = Symbol('My symbol');

"your symbol is " + sym
// TypeError: can't convert symbol to string
`your symbol is ${sym}`
// TypeError: can't convert symbol to string

但是,Symbol 值可以显式转为字符串。

let sym = Symbol('My symbol');

String(sym) // 'Symbol(My symbol)'
sym.toString() // 'Symbol(My symbol)'

另外,Symbol 值也可以转为布尔值,但是不能转为数值。

let sym = Symbol();
Boolean(sym) // true
!sym // false if (sym) {
// ...
} Number(sym) // TypeError
sym + 2 // TypeError

作为属性名的 Symbol

由于每一个 Symbol 值都是不相等的,这意味着 Symbol 值可以作为标识符,用于对象的属性名,就能保证不会出现同名的属性。这对于一个对象由多个模块构成的情况非常有用,能防止某一个键被不小心改写或覆盖。

let mySymbol = Symbol();

// 第一种写法
let a = {};
a[mySymbol] = 'Hello!'; // 第二种写法
let a = {
[mySymbol]: 'Hello!'
}; // 第三种写法
let a = {};
Object.defineProperty(a, mySymbol, { value: 'Hello!' }); // 以上写法都得到同样结果
a[mySymbol] // "Hello!"

上面代码通过方括号结构和Object.defineProperty,将对象的属性名指定为一个 Symbol 值。

注意,Symbol 值作为对象属性名时,不能用点运算符。

const mySymbol = Symbol();
const a = {}; a.mySymbol = 'Hello!';
a[mySymbol] // undefined
a['mySymbol'] // "Hello!"

上面代码中,因为点运算符后面总是字符串,所以不会读取mySymbol作为标识名所指代的那个值,导致a的属性名实际上是一个字符串,而不是一个 Symbol 值。

同理,在对象的内部,使用 Symbol 值定义属性时,Symbol 值必须放在方括号之中。

let s = Symbol();

let obj = {
[s]: function (arg) { ... }
}; obj[s](123);

上面代码中,如果s不放在方括号中,该属性的键名就是字符串s,而不是s所代表的那个 Symbol 值。

采用增强的对象写法,上面代码的obj对象可以写得更简洁一些。

let obj = {
[s](arg) { ... }
};

Symbol 类型还可以用于定义一组常量,保证这组常量的值都是不相等的。

log.levels = {
DEBUG: Symbol('debug'),
INFO: Symbol('info'),
WARN: Symbol('warn')
};
log(log.levels.DEBUG, 'debug message');
log(log.levels.INFO, 'info message');

下面是另外一个例子。

const COLOR_RED    = Symbol();
const COLOR_GREEN = Symbol(); function getComplement(color) {
switch (color) {
case COLOR_RED:
return COLOR_GREEN;
case COLOR_GREEN:
return COLOR_RED;
default:
throw new Error('Undefined color');
}
}

常量使用 Symbol 值最大的好处,就是其他任何值都不可能有相同的值了,因此可以保证上面的switch语句会按设计的方式工作。

还有一点需要注意,Symbol 值作为属性名时,该属性还是公开属性,不是私有属性。

实例:消除魔术字符串

魔术字符串指的是,在代码之中多次出现、与代码形成强耦合的某一个具体的字符串或者数值。风格良好的代码,应该尽量消除魔术字符串,改由含义清晰的变量代替。

function getArea(shape, options) {
let area = 0; switch (shape) {
case 'Triangle': // 魔术字符串
area = .5 * options.width * options.height;
break;
/* ... more code ... */
} return area;
} getArea('Triangle', { width: 100, height: 100 }); // 魔术字符串

上面代码中,字符串Triangle就是一个魔术字符串。它多次出现,与代码形成“强耦合”,不利于将来的修改和维护。

常用的消除魔术字符串的方法,就是把它写成一个变量。

const shapeType = {
triangle: 'Triangle'
}; function getArea(shape, options) {
let area = 0;
switch (shape) {
case shapeType.triangle:
area = .5 * options.width * options.height;
break;
}
return area;
} getArea(shapeType.triangle, { width: 100, height: 100 });

上面代码中,我们把Triangle写成shapeType对象的triangle属性,这样就消除了强耦合。

如果仔细分析,可以发现shapeType.triangle等于哪个值并不重要,只要确保不会跟其他shapeType属性的值冲突即可。因此,这里就很适合改用 Symbol 值。

const shapeType = {
triangle: Symbol()
};

上面代码中,除了将shapeType.triangle的值设为一个 Symbol,其他地方都不用修改。

属性名的遍历

Symbol 作为属性名,该属性不会出现在for...infor...of循环中,也不会被Object.keys()Object.getOwnPropertyNames()JSON.stringify()返回。但是,它也不是私有属性,有一个Object.getOwnPropertySymbols方法,可以获取指定对象的所有 Symbol 属性名。

Object.getOwnPropertySymbols方法返回一个数组,成员是当前对象的所有用作属性名的 Symbol 值。

const obj = {};
let a = Symbol('a');
let b = Symbol('b'); obj[a] = 'Hello';
obj[b] = 'World'; const objectSymbols = Object.getOwnPropertySymbols(obj); objectSymbols
// [Symbol(a), Symbol(b)]

下面是另一个例子,Object.getOwnPropertySymbols方法与for...in循环、Object.getOwnPropertyNames方法进行对比的例子。

const obj = {};

let foo = Symbol("foo");

Object.defineProperty(obj, foo, {
value: "foobar",
}); for (let i in obj) {
console.log(i); // 无输出
} Object.getOwnPropertyNames(obj)
// [] Object.getOwnPropertySymbols(obj)
// [Symbol(foo)]

上面代码中,使用Object.getOwnPropertyNames方法得不到Symbol属性名,需要使用Object.getOwnPropertySymbols方法。

另一个新的 API,Reflect.ownKeys方法可以返回所有类型的键名,包括常规键名和 Symbol 键名。

let obj = {
[Symbol('my_key')]: 1,
enum: 2,
nonEnum: 3
}; Reflect.ownKeys(obj)
// ["enum", "nonEnum", Symbol(my_key)]

由于以 Symbol 值作为名称的属性,不会被常规方法遍历得到。我们可以利用这个特性,为对象定义一些非私有的、但又希望只用于内部的方法。

let size = Symbol('size');

class Collection {
constructor() {
this[size] = 0;
} add(item) {
this[this[size]] = item;
this[size]++;
} static sizeOf(instance) {
return instance[size];
}
} let x = new Collection();
Collection.sizeOf(x) // 0 x.add('foo');
Collection.sizeOf(x) // 1 Object.keys(x) // ['0']
Object.getOwnPropertyNames(x) // ['0']
Object.getOwnPropertySymbols(x) // [Symbol(size)]

上面代码中,对象xsize属性是一个 Symbol 值,所以Object.keys(x)Object.getOwnPropertyNames(x)都无法获取它。这就造成了一种非私有的内部方法的效果。

Symbol.for(),Symbol.keyFor()

有时,我们希望重新使用同一个 Symbol 值,Symbol.for方法可以做到这一点。它接受一个字符串作为参数,然后搜索有没有以该参数作为名称的 Symbol 值。如果有,就返回这个 Symbol 值,否则就新建并返回一个以该字符串为名称的 Symbol 值。

let s1 = Symbol.for('foo');
let s2 = Symbol.for('foo'); s1 === s2 // true

上面代码中,s1s2都是 Symbol 值,但是它们都是同样参数的Symbol.for方法生成的,所以实际上是同一个值。

Symbol.for()Symbol()这两种写法,都会生成新的 Symbol。它们的区别是,前者会被登记在全局环境中供搜索,后者不会。Symbol.for()不会每次调用就返回一个新的 Symbol 类型的值,而是会先检查给定的key是否已经存在,如果不存在才会新建一个值。比如,如果你调用Symbol.for("cat")30 次,每次都会返回同一个 Symbol 值,但是调用Symbol("cat")30 次,会返回 30 个不同的 Symbol 值。

Symbol.for("bar") === Symbol.for("bar")
// true Symbol("bar") === Symbol("bar")
// false

上面代码中,由于Symbol()写法没有登记机制,所以每次调用都会返回一个不同的值。

Symbol.keyFor方法返回一个已登记的 Symbol 类型值的key

let s1 = Symbol.for("foo");
Symbol.keyFor(s1) // "foo" let s2 = Symbol("foo");
Symbol.keyFor(s2) // undefined

上面代码中,变量s2属于未登记的 Symbol 值,所以返回undefined

需要注意的是,Symbol.for为 Symbol 值登记的名字,是全局环境的,可以在不同的 iframe 或 service worker 中取到同一个值。

iframe = document.createElement('iframe');
iframe.src = String(window.location);
document.body.appendChild(iframe); iframe.contentWindow.Symbol.for('foo') === Symbol.for('foo')
// true

上面代码中,iframe 窗口生成的 Symbol 值,可以在主页面得到。

实例:模块的 Singleton 模式

Singleton 模式指的是调用一个类,任何时候返回的都是同一个实例。

对于 Node 来说,模块文件可以看成是一个类。怎么保证每次执行这个模块文件,返回的都是同一个实例呢?

很容易想到,可以把实例放到顶层对象global

// mod.js
function A() {
this.foo = 'hello';
} if (!global._foo) {
global._foo = new A();
} module.exports = global._foo;

然后,加载上面的mod.js

const a = require('./mod.js');
console.log(a.foo);

上面代码中,变量a任何时候加载的都是A的同一个实例。

但是,这里有一个问题,全局变量global._foo是可写的,任何文件都可以修改。

const a = require('./mod.js');
global._foo = 123;

上面的代码,会使得别的脚本加载mod.js都失真。

为了防止这种情况出现,我们就可以使用 Symbol。

// mod.js
const FOO_KEY = Symbol.for('foo'); function A() {
this.foo = 'hello';
} if (!global[FOO_KEY]) {
global[FOO_KEY] = new A();
} module.exports = global[FOO_KEY];

上面代码中,可以保证global[FOO_KEY]不会被无意间覆盖,但还是可以被改写。

const a = require('./mod.js');
global[Symbol.for('foo')] = 123;

如果键名使用Symbol方法生成,那么外部将无法引用这个值,当然也就无法改写。

// mod.js
const FOO_KEY = Symbol('foo'); // 后面代码相同 ……

上面代码将导致其他脚本都无法引用FOO_KEY。但这样也有一个问题,就是如果多次执行这个脚本,每次得到的FOO_KEY都是不一样的。虽然 Node 会将脚本的执行结果缓存,一般情况下,不会多次执行同一个脚本,但是用户可以手动清除缓存,所以也不是完全可靠。

内置的 Symbol 值

除了定义自己使用的 Symbol 值以外,ES6 还提供了 11 个内置的 Symbol 值,指向语言内部使用的方法。

Symbol.hasInstance

对象的Symbol.hasInstance属性,指向一个内部方法。当其他对象使用instanceof运算符,判断是否为该对象的实例时,会调用这个方法。比如,foo instanceof Foo在语言内部,实际调用的是Foo[Symbol.hasInstance](foo)

class MyClass {
[Symbol.hasInstance](foo) {
return foo instanceof Array;
}
} [1, 2, 3] instanceof new MyClass() // true

上面代码中,MyClass是一个类,new MyClass()会返回一个实例。该实例的Symbol.hasInstance方法,会在进行instanceof运算时自动调用,判断左侧的运算子是否为Array的实例。

下面是另一个例子。

class Even {
static [Symbol.hasInstance](obj) {
return Number(obj) % 2 === 0;
}
} // 等同于
const Even = {
[Symbol.hasInstance](obj) {
return Number(obj) % 2 === 0;
}
}; 1 instanceof Even // false
2 instanceof Even // true
12345 instanceof Even // false

Symbol.isConcatSpreadable

对象的Symbol.isConcatSpreadable属性等于一个布尔值,表示该对象用于Array.prototype.concat()时,是否可以展开。

let arr1 = ['c', 'd'];
['a', 'b'].concat(arr1, 'e') // ['a', 'b', 'c', 'd', 'e']
arr1[Symbol.isConcatSpreadable] // undefined let arr2 = ['c', 'd'];
arr2[Symbol.isConcatSpreadable] = false;
['a', 'b'].concat(arr2, 'e') // ['a', 'b', ['c','d'], 'e']

上面代码说明,数组的默认行为是可以展开,Symbol.isConcatSpreadable默认等于undefined。该属性等于true时,也有展开的效果。

类似数组的对象正好相反,默认不展开。它的Symbol.isConcatSpreadable属性设为true,才可以展开。

let obj = {length: 2, 0: 'c', 1: 'd'};
['a', 'b'].concat(obj, 'e') // ['a', 'b', obj, 'e'] obj[Symbol.isConcatSpreadable] = true;
['a', 'b'].concat(obj, 'e') // ['a', 'b', 'c', 'd', 'e']

Symbol.isConcatSpreadable属性也可以定义在类里面。

class A1 extends Array {
constructor(args) {
super(args);
this[Symbol.isConcatSpreadable] = true;
}
}
class A2 extends Array {
constructor(args) {
super(args);
}
get [Symbol.isConcatSpreadable] () {
return false;
}
}
let a1 = new A1();
a1[0] = 3;
a1[1] = 4;
let a2 = new A2();
a2[0] = 5;
a2[1] = 6;
[1, 2].concat(a1).concat(a2)
// [1, 2, 3, 4, [5, 6]]

上面代码中,类A1是可展开的,类A2是不可展开的,所以使用concat时有不一样的结果。

注意,Symbol.isConcatSpreadable的位置差异,A1是定义在实例上,A2是定义在类本身,效果相同。

Symbol.species

对象的Symbol.species属性,指向当前对象的构造函数。创造实例时,默认会调用这个方法,即使用这个属性返回的函数当作构造函数,来创造新的实例对象。

class MyArray extends Array {
// 覆盖父类 Array 的构造函数
static get [Symbol.species]() { return Array; }
}

上面代码中,子类MyArray继承了父类Array。创建MyArray的实例对象时,本来会调用它自己的构造函数(本例中被省略了),但是由于定义了Symbol.species属性,所以会使用这个属性返回的的函数,创建MyArray的实例。

这个例子也说明,定义Symbol.species属性要采用get读取器。默认的Symbol.species属性等同于下面的写法。

static get [Symbol.species]() {
return this;
}

下面是一个例子。

class MyArray extends Array {
static get [Symbol.species]() { return Array; }
}
let a = new MyArray(1,2,3);
let mapped = a.map(x => x * x); mapped instanceof MyArray // false
mapped instanceof Array // true

上面代码中,由于构造函数被替换成了Array。所以,mapped对象不是MyArray的实例,而是Array的实例。

Symbol.match

对象的Symbol.match属性,指向一个函数。当执行str.match(myObject)时,如果该属性存在,会调用它,返回该方法的返回值。

String.prototype.match(regexp)
// 等同于
regexp[Symbol.match](this) class MyMatcher {
[Symbol.match](string) {
return 'hello world'.indexOf(string);
}
} 'e'.match(new MyMatcher()) // 1

Symbol.replace

对象的Symbol.replace属性,指向一个方法,当该对象被String.prototype.replace方法调用时,会返回该方法的返回值。

String.prototype.replace(searchValue, replaceValue)
// 等同于
searchValue[Symbol.replace](this, replaceValue)

下面是一个例子。

const x = {};
x[Symbol.replace] = (...s) => console.log(s); 'Hello'.replace(x, 'World') // ["Hello", "World"]

Symbol.replace方法会收到两个参数,第一个参数是replace方法正在作用的对象,上面例子是Hello,第二个参数是替换后的值,上面例子是World

Symbol.search

对象的Symbol.search属性,指向一个方法,当该对象被String.prototype.search方法调用时,会返回该方法的返回值。

String.prototype.search(regexp)
// 等同于
regexp[Symbol.search](this) class MySearch {
constructor(value) {
this.value = value;
}
[Symbol.search](string) {
return string.indexOf(this.value);
}
}
'foobar'.search(new MySearch('foo')) // 0

Symbol.split

对象的Symbol.split属性,指向一个方法,当该对象被String.prototype.split方法调用时,会返回该方法的返回值。

String.prototype.split(separator, limit)
// 等同于
separator[Symbol.split](this, limit)

下面是一个例子。

class MySplitter {
constructor(value) {
this.value = value;
}
[Symbol.split](string) {
let index = string.indexOf(this.value);
if (index === -1) {
return string;
}
return [
string.substr(0, index),
string.substr(index + this.value.length)
];
}
} 'foobar'.split(new MySplitter('foo'))
// ['', 'bar'] 'foobar'.split(new MySplitter('bar'))
// ['foo', ''] 'foobar'.split(new MySplitter('baz'))
// 'foobar'

上面方法使用Symbol.split方法,重新定义了字符串对象的split方法的行为,

Symbol.iterator

对象的Symbol.iterator属性,指向该对象的默认遍历器方法。

const myIterable = {};
myIterable[Symbol.iterator] = function* () {
yield 1;
yield 2;
yield 3;
}; [...myIterable] // [1, 2, 3]

对象进行for...of循环时,会调用Symbol.iterator方法,返回该对象的默认遍历器,详细介绍参见《Iterator 和 for...of 循环》一章。

class Collection {
*[Symbol.iterator]() {
let i = 0;
while(this[i] !== undefined) {
yield this[i];
++i;
}
}
} let myCollection = new Collection();
myCollection[0] = 1;
myCollection[1] = 2; for(let value of myCollection) {
console.log(value);
}
// 1
// 2

Symbol.toPrimitive

对象的Symbol.toPrimitive属性,指向一个方法。该对象被转为原始类型的值时,会调用这个方法,返回该对象对应的原始类型值。

Symbol.toPrimitive被调用时,会接受一个字符串参数,表示当前运算的模式,一共有三种模式。

  • Number:该场合需要转成数值
  • String:该场合需要转成字符串
  • Default:该场合可以转成数值,也可以转成字符串
let obj = {
[Symbol.toPrimitive](hint) {
switch (hint) {
case 'number':
return 123;
case 'string':
return 'str';
case 'default':
return 'default';
default:
throw new Error();
}
}
}; 2 * obj // 246
3 + obj // '3default'
obj == 'default' // true
String(obj) // 'str'

Symbol.toStringTag

对象的Symbol.toStringTag属性,指向一个方法。在该对象上面调用Object.prototype.toString方法时,如果这个属性存在,它的返回值会出现在toString方法返回的字符串之中,表示对象的类型。也就是说,这个属性可以用来定制[object Object][object Array]object后面的那个字符串。

// 例一
({[Symbol.toStringTag]: 'Foo'}.toString())
// "[object Foo]" // 例二
class Collection {
get [Symbol.toStringTag]() {
return 'xxx';
}
}
let x = new Collection();
Object.prototype.toString.call(x) // "[object xxx]"

ES6 新增内置对象的Symbol.toStringTag属性值如下。

  • JSON[Symbol.toStringTag]:'JSON'
  • Math[Symbol.toStringTag]:'Math'
  • Module 对象M[Symbol.toStringTag]:'Module'
  • ArrayBuffer.prototype[Symbol.toStringTag]:'ArrayBuffer'
  • DataView.prototype[Symbol.toStringTag]:'DataView'
  • Map.prototype[Symbol.toStringTag]:'Map'
  • Promise.prototype[Symbol.toStringTag]:'Promise'
  • Set.prototype[Symbol.toStringTag]:'Set'
  • %TypedArray%.prototype[Symbol.toStringTag]:'Uint8Array'等
  • WeakMap.prototype[Symbol.toStringTag]:'WeakMap'
  • WeakSet.prototype[Symbol.toStringTag]:'WeakSet'
  • %MapIteratorPrototype%[Symbol.toStringTag]:'Map Iterator'
  • %SetIteratorPrototype%[Symbol.toStringTag]:'Set Iterator'
  • %StringIteratorPrototype%[Symbol.toStringTag]:'String Iterator'
  • Symbol.prototype[Symbol.toStringTag]:'Symbol'
  • Generator.prototype[Symbol.toStringTag]:'Generator'
  • GeneratorFunction.prototype[Symbol.toStringTag]:'GeneratorFunction'

Symbol.unscopables

对象的Symbol.unscopables属性,指向一个对象。该对象指定了使用with关键字时,哪些属性会被with环境排除。

Array.prototype[Symbol.unscopables]
// {
// copyWithin: true,
// entries: true,
// fill: true,
// find: true,
//   findIndex: true,
// includes: true,
// keys: true
// } Object.keys(Array.prototype[Symbol.unscopables])
// ['copyWithin', 'entries', 'fill', 'find', 'findIndex', 'includes', 'keys']

上面代码说明,数组有 7 个属性,会被with命令排除。

// 没有 unscopables 时
class MyClass {
foo() { return 1; }
} var foo = function () { return 2; }; with (MyClass.prototype) {
foo(); // 1
} // 有 unscopables 时
class MyClass {
foo() { return 1; }
get [Symbol.unscopables]() {
return { foo: true };
}
} var foo = function () { return 2; }; with (MyClass.prototype) {
foo(); // 2
}

上面代码通过指定Symbol.unscopables属性,使得with语法块不会在当前作用域寻找foo属性,即foo将指向外层作用域的变量。


9.Symbol的更多相关文章

  1. iOS开发 引用第三方库出现duplicate symbol时的处理方法

      该篇文章是我自己从我的新浪博客上摘抄过来的, 原文链接为: http://blog.sina.com.cn/s/blog_dcc636350102wat5.html     在iOS开发中, 难免 ...

  2. OpenSceneGraph 编译 error LNK2019:unresolved external symbol 错误

    在编译 OpenSceneGraph 的一个简单示例时, #include <osgViewer/Viewer> #include <osgDB/ReadFile> void ...

  3. C语言调试过程中duplicate symbol错误分析

    说明:在我们调试C语言的过程中,经常会遇到duplicate symbol错误(在Mac平台下利用Xcode集成开发环境).如下图: 一.简单分析一下C语言程序的开发步骤. 由上图我们可以看出C语言由 ...

  4. 用vue.js学习es6(四):Symbol类型

    一.Symbol类型: 1.ES6引入了一种新的原始数据类型Symbol,表示独一无二的值.它是JavaScript语言的第七种数据类型,前六种是:Undefined.Null. 布尔值(Boolea ...

  5. 10 Symbol

    Symbol 书中讲了2部分. Symbol() Symbol 属性值. 完全两种画风的东西. 1. Symbol 首先他是一种全新的值. 不属于以前的任何一种 ES6引入了一种新的原始数据类型Sym ...

  6. Xcode同一个Workspace中两个工程依赖于Undefined Symbol Error

    Workspace中包含两个工程A和B: A是dylib工程,引用了另一个动态库C,B需要链接(依赖)A库.当编译B时,会先编译A,然后把A生成的dylib拷贝到B的生成目录中.如果要运行B的话需要把 ...

  7. VC++ : error LNK2001: unresolved external symbol "__declspec(dllimport) public: __thiscall std::basic_string<wchar_t,struct std::char_traits<wchar_t>

    最近学习Google Breakpad,将其用在了自己的项目中,编译的版本为VS2010,没有什么问题.但是为了和之前的程序兼容,需要使用VS2008版本的程序,于是又编译了VS2008版本的代码,但 ...

  8. python import cv2 出错:cv2.x86_64-linux-gnu.so: undefined symbol

    之前写过一个python使用opencv处理图片的脚本,当时是可以使用的,现在突然发现执行时出错: ImportError: /usr/lib/python2.7/dist-packages/cv2. ...

  9. symbol table meaning

    SYMBOL TABLE: 00000000 l    df *ABS*  00000000 m.c 00000000 l    d  .text  00000000 .text 00000000 l ...

  10. 【原】IOS合并lib(.a)库的终极可用方法(可用于解决duplicate symbol静态库冲突)

    网上流传了太多关于合并lib库的方法,自己也尝试过,但大多失败.有感于这种急于解决问题,经过百般尝试后依旧无果的无奈心情,小翁在这里用一个实例来完整阐述如何在mac中合并lib静态库. 这里以移动广告 ...

随机推荐

  1. 类文件结构与javap的使用

    此文已由作者赵计刚薪授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 1.javap的使用与类文件结构 使用过程: java源代码:  1 package compile;   ...

  2. html开发基础

    1 Doctype Doctype告诉浏览器使用什么样的html或xhtml规范来解析html文档 有和无的区别 BackCompat:标准兼容模式未开启(或叫怪异模式[Quirks mode].混杂 ...

  3. 苹果appID的获取方法

    1.登陆 iTunes Connect iTunes Connect 2.选择我的app 3.选择相应的应用 4.查看结果

  4. Python3.5 学习四

    装饰器 定义:本质是函数,装饰其他函数,即为其他函数添加附加功能的 原则: 1 不能修改被装饰函数的源代码 2 不能改变被装饰函数的调用方式(对于被装饰函数来说完全透明,不会受影响) 实现装饰器功能的 ...

  5. 微信浏览器禁止app下载链接的两种处理方法

    最近替朋友放一个微信下载链接,通过二维码扫描下载. 通过扫描二维码下载APP已成为一个非常方便的方式,微信也成为扫描二维码重要的工具,但是扫描后微信浏览器会对APK和appStore的链接进行屏蔽,导 ...

  6. LOJ#162. 快速幂 2(分块)

    题面 传送门 题解 orzljz 我们分块,设\(s=\sqrt{p}+1\),那么\(x^a\)可以拆成\((x^s)^{a/s}\)和\(x^{a\bmod s}\),\(O(s)\)预处理,\( ...

  7. Python装饰器(函数)

    闭包 1.作用域L_E_G_B(局部.内嵌.全局...): x=10#全局 def f(): a=5 #嵌套作用域 def inner(): count = 7 #局部变量 print a retur ...

  8. HDU 3007 模拟退火算法

    Buried memory Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  9. Requests Header | Http Header

    Requests Header | Http Header Header 解释 示例 Accept 指定客户端能够接收的内容类型 Accept: text/plain, text/html Accep ...

  10. 十招谷歌 Google 搜索

    十招谷歌搜索 一.或者 OR 二.网址 insite:example.com keyword 三.大约 1.类似查询(记得) ~keyword 2.模糊查询(记得) key*****word 3.模糊 ...