Coloring Brackets
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Once Petya read a problem about a bracket sequence. He gave it much thought but didn't find a solution. Today you will face it.

You are given string s. It represents a correct bracket sequence. A correct bracket sequence is the sequence of opening ("(")
and closing (")") brackets, such that it is possible to obtain a correct mathematical expression from it, inserting numbers and operators between the brackets.
For example, such sequences as "(())()" and "()" are correct
bracket sequences and such sequences as ")()" and "(()" are
not.

In a correct bracket sequence each bracket corresponds to the matching bracket (an opening bracket corresponds to the matching closing bracket and vice versa). For example, in a bracket sequence shown of the figure below, the third bracket corresponds to the
matching sixth one and the fifth bracket corresponds to the fourth one.

You are allowed to color some brackets in the bracket sequence so as all three conditions are fulfilled:

  • Each bracket is either not colored any color, or is colored red, or is colored blue.
  • For any pair of matching brackets exactly one of them is colored. In other words, for any bracket the following is true: either it or the matching bracket that corresponds to it is colored.
  • No two neighboring colored brackets have the same color.

Find the number of different ways to color the bracket sequence. The ways should meet the above-given conditions. Two ways of coloring are considered different if they differ in the color of at least one bracket. As the result can be quite large, print it modulo 1000000007 (109 + 7).

Input

The first line contains the single string s (2 ≤ |s| ≤ 700)
which represents a correct bracket sequence.

Output

Print the only number — the number of ways to color the bracket sequence that meet the above given conditions modulo 1000000007 (109 + 7).

Examples
input
(())
output
12
input
(()())
output
40
input
()
output
4
区间DP
用dp[i][j][p][k] 表示i到j的区间,左端点是什么颜色,右端点是什么颜色。用DFS实现比较简单一点,用递推很烦

关于区间DP,可以参照这个博客

http://blog.csdn.net/dacc123/article/details/50885903

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h>
#include <stack> using namespace std;
const long long int mod=1e9+7;
char a[705];
long long int dp[705][705][3][3];
int s[705];
int m[705];
int top;
void dfs(int i,int j)
{
if(j-i==1)
{
dp[i][j][0][1]=1;
dp[i][j][0][2]=1;
dp[i][j][1][0]=1;
dp[i][j][2][0]=1;
return;
}
else if(m[i]==j)
{
dfs(i+1,j-1);
for(int p=0;p<3;p++)
{
for(int q=0;q<3;q++)
{
if(q!=1) dp[i][j][0][1]=(dp[i][j][0][1]+dp[i+1][j-1][p][q])%mod;
if(q!=2) dp[i][j][0][2]=(dp[i][j][0][2]+dp[i+1][j-1][p][q])%mod;
if(p!=1) dp[i][j][1][0]=(dp[i][j][1][0]+dp[i+1][j-1][p][q])%mod;
if(p!=2) dp[i][j][2][0]=(dp[i][j][2][0]+dp[i+1][j-1][p][q])%mod;
}
}
return;
}
else
{
int k=m[i];
dfs(i,k);
dfs(k+1,j);
for(int p=0;p<3;p++)
for(int q=0;q<3;q++)
for(int x=0;x<3;x++)
for(int y=0;y<3;y++)
if(!((y==1&&x==1)||(y==2&&x==2)))
dp[i][j][p][q]=(dp[i][j][p][q]+(dp[i][k][p][x]*dp[k+1][j][y][q])%mod)%mod;
return;
} }
int main()
{
while(scanf("%s",a)!=EOF)
{
int len=strlen(a);
top=-1;
for(int i=0;i<len;i++)
{
if(a[i]=='(') s[++top]=i;
else
{
m[s[top]]=i;
//m[i]=s[top];
top--;
}
}
memset(dp,0,sizeof(dp));
dfs(0,len-1);
long long int ans=0;
for(int i=0;i<3;i++)
for(int j=0;j<3;j++)
ans=(ans+dp[0][len-1][i][j])%mod;
printf("%lld\n",ans);
}
return 0;
}



Code Forces 149DColoring Brackets(区间DP)的更多相关文章

  1. Codeforces 508E Arthur and Brackets 区间dp

    Arthur and Brackets 区间dp, dp[ i ][ j ]表示第 i 个括号到第 j 个括号之间的所有括号能不能形成一个合法方案. 然后dp就完事了. #include<bit ...

  2. POJ 2995 Brackets 区间DP

    POJ 2995 Brackets 区间DP 题意 大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配.需要注意的是这里的匹配规则. 解题思路 区间DP,开始自己没想到是区间 ...

  3. CF149D. Coloring Brackets[区间DP !]

    题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...

  4. Brackets(区间dp)

    Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3624   Accepted: 1879 Descript ...

  5. POJ2955:Brackets(区间DP)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  6. HOJ 1936&POJ 2955 Brackets(区间DP)

    Brackets My Tags (Edit) Source : Stanford ACM Programming Contest 2004 Time limit : 1 sec Memory lim ...

  7. POJ2955 Brackets —— 区间DP

    题目链接:https://vjudge.net/problem/POJ-2955 Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Su ...

  8. poj 2955 Brackets (区间dp基础题)

    We give the following inductive definition of a “regular brackets” sequence: the empty sequence is a ...

  9. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

随机推荐

  1. 【转】WCF入门教程六[一个简单的Demo]

    一.前言 前面的几个章节介绍了很多理论基础,如:什么是WCF.WCF中的A.B.C.WCF的传输模式.本文从零开始和大家一起写一个小的WCF应用程序Demo. 大多框架的学习都是从增.删.改.查开始来 ...

  2. C#代理多样性

    一.代理 首先我们要弄清代理是个什么东西.别让一串翻译过来的概念把大家搞晕了头.有的文章把代理称委托.代表等,其实它们是一个东西,英文表述都是“Delegate”.由于没有一本权威的书来规范这个概念, ...

  3. (转)sqlite3生成lib遇到的问题

    今天想用一用sqlite,但是下载后发现只有DLL,没有LIB,只能自己生成了.在H:/Program Files/Microsoft Visual Studio 8/VC/bin里面有个lib.ex ...

  4. perl 内置操作符 $^O -判断操作系统环境

    今天看bowtie2的源代码的时候,发现有这样一段用法: my $os_is_nix = $^O ne "MSWin32"; my $align_bin_s = $os_is_ni ...

  5. 基础控制器MVC ,全局判断

    public class BaseController : Controller    {        //        // GET: /Base/ protected override voi ...

  6. 原型模式(prototype pattern)---------创造型模式

    原型模式的缺点: 1.需要为每一个类配备一个克隆方法,而且该克隆方法位于一个类的内部,当对已有的类进行改造时,需要修改源代码,违背了开闭原则(open-closed discipline) 2.在实现 ...

  7. NHibernate初学二之简单执行SQL及HQL、Linq

    上篇文章简单介绍NHibernate之简单增删改查,本文将会简单介绍有关执行NHibernate的SQL.HQL及存储过程: 一:执行SQL语句实例,运用CreateSQLQuery方法 public ...

  8. 配置Java的jdk环境变量

    1.classpath E:\Java\jdk1..0_20\jre\lib\rt.jar;.;E:\Tomcat\lib; 2.JAVA_HOME E:\Java\jdk1..0_20; 3.Pat ...

  9. ping命令和telnet命令

    1.检查能不能连接上远程主机 ping  主机ip 2.检查远程主机端口是不是开放 telnet 198.10.10.69 1521 Trying 198.10.10.69...Connected t ...

  10. ORA-20000的解决过程

    今天在用impdp导数据时出现卡住的现象,开始我以为是数据量过大导致的,过了两个小时还是卡住,看警告日志得到下面的错误信息: GATHER_STATS_JOB encountered errors.  ...