Code Forces 149DColoring Brackets(区间DP)
2 seconds
256 megabytes
standard input
standard output
Once Petya read a problem about a bracket sequence. He gave it much thought but didn't find a solution. Today you will face it.
You are given string s. It represents a correct bracket sequence. A correct bracket sequence is the sequence of opening ("(")
and closing (")") brackets, such that it is possible to obtain a correct mathematical expression from it, inserting numbers and operators between the brackets.
For example, such sequences as "(())()" and "()" are correct
bracket sequences and such sequences as ")()" and "(()" are
not.
In a correct bracket sequence each bracket corresponds to the matching bracket (an opening bracket corresponds to the matching closing bracket and vice versa). For example, in a bracket sequence shown of the figure below, the third bracket corresponds to the
matching sixth one and the fifth bracket corresponds to the fourth one.

You are allowed to color some brackets in the bracket sequence so as all three conditions are fulfilled:
- Each bracket is either not colored any color, or is colored red, or is colored blue.
- For any pair of matching brackets exactly one of them is colored. In other words, for any bracket the following is true: either it or the matching bracket that corresponds to it is colored.
- No two neighboring colored brackets have the same color.
Find the number of different ways to color the bracket sequence. The ways should meet the above-given conditions. Two ways of coloring are considered different if they differ in the color of at least one bracket. As the result can be quite large, print it modulo 1000000007 (109 + 7).
The first line contains the single string s (2 ≤ |s| ≤ 700)
which represents a correct bracket sequence.
Print the only number — the number of ways to color the bracket sequence that meet the above given conditions modulo 1000000007 (109 + 7).
(())
12
(()())
40
()
4
关于区间DP,可以参照这个博客
http://blog.csdn.net/dacc123/article/details/50885903
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h>
#include <stack> using namespace std;
const long long int mod=1e9+7;
char a[705];
long long int dp[705][705][3][3];
int s[705];
int m[705];
int top;
void dfs(int i,int j)
{
if(j-i==1)
{
dp[i][j][0][1]=1;
dp[i][j][0][2]=1;
dp[i][j][1][0]=1;
dp[i][j][2][0]=1;
return;
}
else if(m[i]==j)
{
dfs(i+1,j-1);
for(int p=0;p<3;p++)
{
for(int q=0;q<3;q++)
{
if(q!=1) dp[i][j][0][1]=(dp[i][j][0][1]+dp[i+1][j-1][p][q])%mod;
if(q!=2) dp[i][j][0][2]=(dp[i][j][0][2]+dp[i+1][j-1][p][q])%mod;
if(p!=1) dp[i][j][1][0]=(dp[i][j][1][0]+dp[i+1][j-1][p][q])%mod;
if(p!=2) dp[i][j][2][0]=(dp[i][j][2][0]+dp[i+1][j-1][p][q])%mod;
}
}
return;
}
else
{
int k=m[i];
dfs(i,k);
dfs(k+1,j);
for(int p=0;p<3;p++)
for(int q=0;q<3;q++)
for(int x=0;x<3;x++)
for(int y=0;y<3;y++)
if(!((y==1&&x==1)||(y==2&&x==2)))
dp[i][j][p][q]=(dp[i][j][p][q]+(dp[i][k][p][x]*dp[k+1][j][y][q])%mod)%mod;
return;
} }
int main()
{
while(scanf("%s",a)!=EOF)
{
int len=strlen(a);
top=-1;
for(int i=0;i<len;i++)
{
if(a[i]=='(') s[++top]=i;
else
{
m[s[top]]=i;
//m[i]=s[top];
top--;
}
}
memset(dp,0,sizeof(dp));
dfs(0,len-1);
long long int ans=0;
for(int i=0;i<3;i++)
for(int j=0;j<3;j++)
ans=(ans+dp[0][len-1][i][j])%mod;
printf("%lld\n",ans);
}
return 0;
}
Code Forces 149DColoring Brackets(区间DP)的更多相关文章
- Codeforces 508E Arthur and Brackets 区间dp
Arthur and Brackets 区间dp, dp[ i ][ j ]表示第 i 个括号到第 j 个括号之间的所有括号能不能形成一个合法方案. 然后dp就完事了. #include<bit ...
- POJ 2995 Brackets 区间DP
POJ 2995 Brackets 区间DP 题意 大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配.需要注意的是这里的匹配规则. 解题思路 区间DP,开始自己没想到是区间 ...
- CF149D. Coloring Brackets[区间DP !]
题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...
- Brackets(区间dp)
Brackets Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3624 Accepted: 1879 Descript ...
- POJ2955:Brackets(区间DP)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- HOJ 1936&POJ 2955 Brackets(区间DP)
Brackets My Tags (Edit) Source : Stanford ACM Programming Contest 2004 Time limit : 1 sec Memory lim ...
- POJ2955 Brackets —— 区间DP
题目链接:https://vjudge.net/problem/POJ-2955 Brackets Time Limit: 1000MS Memory Limit: 65536K Total Su ...
- poj 2955 Brackets (区间dp基础题)
We give the following inductive definition of a “regular brackets” sequence: the empty sequence is a ...
- poj2955 Brackets (区间dp)
题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...
随机推荐
- Spring的p标签
看Spring in action的时候看过p标签,可惜这东西不用就忘. p标签是为了简化setter的注入而引入的. 用法: p:属性 = "{值}" p:属性-ref = &q ...
- html学习笔记五
关于服务端和client的校验问题 上述的表格信息填写后发现,即使有些信息不添,依旧能够提交 所以针对此问题,我们要在client进行数据填写信息的增强型校验(必添单元,必须填写有效信息,否则无法提交 ...
- 转载:【原译】Erlang常见注意事项(Efficiency Guide)
转自:http://www.cnblogs.com/futuredo/archive/2012/10/17/2726416.html Common Caveats(常见注意事项) Erlang/OTP ...
- CentOS查看你是否有USB 3.0端口
近来的大多数的新计算机都有了USB 3.0接口了.但是你怎么知道你的计算机有没有USB 3.0接口?这篇短文中,我们会告诉如何在Linux下知道你的系统上有USB 3还是USB3接口. 在Linux终 ...
- mysql5.7 编码统一utf-8
查看mysql数据库编码: show variables like 'character%'; mysql> show variables like 'character%'; +------- ...
- PL/SQL中decode函数简介
今天看别人的SQL时看这里面还有decode()函数,以前从来没接触到,上网查了一下,还挺好用的一个函数,写下来希望对朋友们有帮助哈! decode()函数简介: 主要作用:将查询结果翻译成其他值(即 ...
- angularJs 页面{{xxx}}使用三目运算符
<td>{{::item.sex=='w'?'女':'男'}}</td>,记得引号.也可以不用::,用不用::的区别,自行百度
- windows cmd中查看某个命令所在的路径
需求描述: 之前用linux环境下的which命令就能看到某个命令的绝对路径, 然后想在windows下的cmd中是否也能够查看到命令的绝对路径呢 操作过程: 1.windows环境下,通过where ...
- MySQL<多表操作>
多表操作 外键 什么是外键 外键是指引用另一个表中的一列或多列,被引用的列应该具有主键约束或唯一性约束. 外键用于建立和加强两个表数据之间的链接. 为表添加外键约束 想要真正连接两个表的数据,就需要为 ...
- java 字符编码问题
编写一个截取字符串的函数,输入为一个字符串和字节数,输出为按字节截取的字符串.但是要保证汉字不被截半个,如“我ABC”4,应该截为“我AB”,输入“我ABC汉DEF”,6,应该输出为“我ABC”而不是 ...