Code Forces 149DColoring Brackets(区间DP)
2 seconds
256 megabytes
standard input
standard output
Once Petya read a problem about a bracket sequence. He gave it much thought but didn't find a solution. Today you will face it.
You are given string s. It represents a correct bracket sequence. A correct bracket sequence is the sequence of opening ("(")
and closing (")") brackets, such that it is possible to obtain a correct mathematical expression from it, inserting numbers and operators between the brackets.
For example, such sequences as "(())()" and "()" are correct
bracket sequences and such sequences as ")()" and "(()" are
not.
In a correct bracket sequence each bracket corresponds to the matching bracket (an opening bracket corresponds to the matching closing bracket and vice versa). For example, in a bracket sequence shown of the figure below, the third bracket corresponds to the
matching sixth one and the fifth bracket corresponds to the fourth one.

You are allowed to color some brackets in the bracket sequence so as all three conditions are fulfilled:
- Each bracket is either not colored any color, or is colored red, or is colored blue.
- For any pair of matching brackets exactly one of them is colored. In other words, for any bracket the following is true: either it or the matching bracket that corresponds to it is colored.
- No two neighboring colored brackets have the same color.
Find the number of different ways to color the bracket sequence. The ways should meet the above-given conditions. Two ways of coloring are considered different if they differ in the color of at least one bracket. As the result can be quite large, print it modulo 1000000007 (109 + 7).
The first line contains the single string s (2 ≤ |s| ≤ 700)
which represents a correct bracket sequence.
Print the only number — the number of ways to color the bracket sequence that meet the above given conditions modulo 1000000007 (109 + 7).
(())
12
(()())
40
()
4
关于区间DP,可以参照这个博客
http://blog.csdn.net/dacc123/article/details/50885903
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h>
#include <stack> using namespace std;
const long long int mod=1e9+7;
char a[705];
long long int dp[705][705][3][3];
int s[705];
int m[705];
int top;
void dfs(int i,int j)
{
if(j-i==1)
{
dp[i][j][0][1]=1;
dp[i][j][0][2]=1;
dp[i][j][1][0]=1;
dp[i][j][2][0]=1;
return;
}
else if(m[i]==j)
{
dfs(i+1,j-1);
for(int p=0;p<3;p++)
{
for(int q=0;q<3;q++)
{
if(q!=1) dp[i][j][0][1]=(dp[i][j][0][1]+dp[i+1][j-1][p][q])%mod;
if(q!=2) dp[i][j][0][2]=(dp[i][j][0][2]+dp[i+1][j-1][p][q])%mod;
if(p!=1) dp[i][j][1][0]=(dp[i][j][1][0]+dp[i+1][j-1][p][q])%mod;
if(p!=2) dp[i][j][2][0]=(dp[i][j][2][0]+dp[i+1][j-1][p][q])%mod;
}
}
return;
}
else
{
int k=m[i];
dfs(i,k);
dfs(k+1,j);
for(int p=0;p<3;p++)
for(int q=0;q<3;q++)
for(int x=0;x<3;x++)
for(int y=0;y<3;y++)
if(!((y==1&&x==1)||(y==2&&x==2)))
dp[i][j][p][q]=(dp[i][j][p][q]+(dp[i][k][p][x]*dp[k+1][j][y][q])%mod)%mod;
return;
} }
int main()
{
while(scanf("%s",a)!=EOF)
{
int len=strlen(a);
top=-1;
for(int i=0;i<len;i++)
{
if(a[i]=='(') s[++top]=i;
else
{
m[s[top]]=i;
//m[i]=s[top];
top--;
}
}
memset(dp,0,sizeof(dp));
dfs(0,len-1);
long long int ans=0;
for(int i=0;i<3;i++)
for(int j=0;j<3;j++)
ans=(ans+dp[0][len-1][i][j])%mod;
printf("%lld\n",ans);
}
return 0;
}
Code Forces 149DColoring Brackets(区间DP)的更多相关文章
- Codeforces 508E Arthur and Brackets 区间dp
Arthur and Brackets 区间dp, dp[ i ][ j ]表示第 i 个括号到第 j 个括号之间的所有括号能不能形成一个合法方案. 然后dp就完事了. #include<bit ...
- POJ 2995 Brackets 区间DP
POJ 2995 Brackets 区间DP 题意 大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配.需要注意的是这里的匹配规则. 解题思路 区间DP,开始自己没想到是区间 ...
- CF149D. Coloring Brackets[区间DP !]
题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...
- Brackets(区间dp)
Brackets Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3624 Accepted: 1879 Descript ...
- POJ2955:Brackets(区间DP)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- HOJ 1936&POJ 2955 Brackets(区间DP)
Brackets My Tags (Edit) Source : Stanford ACM Programming Contest 2004 Time limit : 1 sec Memory lim ...
- POJ2955 Brackets —— 区间DP
题目链接:https://vjudge.net/problem/POJ-2955 Brackets Time Limit: 1000MS Memory Limit: 65536K Total Su ...
- poj 2955 Brackets (区间dp基础题)
We give the following inductive definition of a “regular brackets” sequence: the empty sequence is a ...
- poj2955 Brackets (区间dp)
题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...
随机推荐
- MySql csv文件导入导出
一.导出到csv(本地导出) 通过mysql客户端shell连接到服务器,选择使用的数据库,输入sql代码: select * from test_info into outfile '/tmp/te ...
- e658. 组合图形
Area shape = new Area(shape1); shape.add(new Area(shape2)); shape.subtract(new Area(shape3)); shape. ...
- const 与#define 的比较
const 与#define 的比较 C++ 语言可以用 const 来定义常量,也可以用 #define 来定义常量.但是前者比后 者有更多的优点: (1) const 常量有数据类型,而宏常量没有 ...
- ubuntu 12.04 LTS server 中文乱码【转】
ubuntu 12.04 LTS server 中文乱码 最近装了一台ubuntu 12.04 server装完后是没有桌面的,后来又手动安装了桌面,但进行后发现桌面是乱码,应该是缺少字体在googl ...
- IOS内购支付server验证模式
IOS 内购支付两种模式: 内置模式 server模式 内置模式的流程: app从app store 获取产品信息 用户选择须要购买的产品 app发送支付请求到app store app store ...
- 深入new/delete:Operator new的全局重载
Operator new 的全局重载 原文地址:http://blog.csdn.net/zhenjing/article/details/4354880 我们经常看到这么一句话: operator ...
- OpenCV学习:图像的载入和显示
一.使用IplImage结构读取并显示图像文件: 运行结果: 二.使用Mat类读取并显示图像文件: 使用 Mat 类,内存管理变得简单,不再像使用 IplImage 那样需要自己申请和释放内存,而且一 ...
- XML高速入门
XML是什么 Extensible Markup Language 自己定义标签: 用来数据传输: 可扩展标记语言,是一种类似超文本标记语言的标记语言. 与HTML的比較: 1.不是用来替代HTML的 ...
- ios开发之--从相机或相册选取图片,并带删除操作的demo
多选图片的一个效果,如下图:
- YARN应用程序开发和设计流程
从业务的角度看,一个应用需要分两部分进行开发,一个是接入YARN平台,实现3个协议,通过YARN实现对集群资源的访问和利用:另一个是业务功能的实现,这个与YARN本身没有太大关系.下面主要阐述如何将一 ...