GAN(Generative Adversarial Nets),产生式对抗网络

存在问题:

1.无法表示数据分布

2.速度慢

3.resolution太小,大了无语义信息

4.无reference

5.intend to generate same image

6.梯度消失

论文摘要:

1、Goodfellow, Ian, et al. "Generative adversarial nets." Advances in Neural Information Processing Systems. 2014.

做如下优化:

全局最优解为:

训练过程:

算法描述:先优化discriminator,再训练generator

latent code插值后出现了渐变特效:

2.Mirza, Mehdi, and Simon Osindero. "Conditional generative adversarial nets."arXiv preprint arXiv:1411.1784 (2014).

优化目标:

好像就是加了label信息。

3.Denton, Emily L., Soumith Chintala, and Rob Fergus. "Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks."Advances in neural information processing systems. 2015.

不知道这篇论文正式发表没有。这篇论文似乎就是做了一个GAN和提高分辨率的结合。不过本来就没有什么语义信息的图片,就算提高分辨率感觉也没什么用,所以感觉96x96分辨率的结果没什么意义。

原理:

整个test过程为:

整个train过程为:

一些例子:

4.Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).

这篇论文也不知道发表没有。

用了很多trick,什么batchnorm,全卷积无全连接,无pooling,用了LeakyReLu。

网络结构:

个人感觉效果还不错:

进行了有趣的实验:

5.Salimans, Tim, et al. "Improved techniques for training gans." arXiv preprint arXiv:1606.03498 (2016).

提出了一些改进的trick。

用feature算距离

加label

效果:感觉没什么语义信息

6.Chen, Xi, et al. "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets." arXiv preprint arXiv:1606.03657 (2016).

主要是为了解决产生一样的sample的问题

公式:

结果:

7. Arjovsky M, Chintala S, Bottou L. Wasserstein GAN[J]. arXiv preprint arXiv:1701.07875, 2017.

相关链接:https://zhuanlan.zhihu.com/p/25071913?utm_medium=social&utm_source=wechat_timeline&from=timeline

https://arxiv.org/abs/1701.07875

对生成器的loss进行散度(JS散度,KL散度)的等价转换,从而更直观也更容易分析不同loss对应的相应问题,这种分析比直接分析函数loss或者minmax函数更加容易。为了解决这些问题,引入了Wasserstein距离,替代了原来的loss。这种loss使得生成器的有一定的梯度,防止梯度消失,生成器训练不动的情况。这种loss还能指示训练效果以及防止模型崩塌。

8.Li, Chongxuan, Jun Zhu, and Bo Zhang. "Max-Margin Deep Generative Models for (Semi-) Supervised Learning." arXiv preprint arXiv:1611.07119 (2016).

实验室学长的工作,用GAN做半监督学习。利用generator产生更多的数据,帮助classfier训练。

9.Wang, Jun, et al. "IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models." arXiv preprint arXiv:1705.10513 (2017).

SIGIR 2017的best paper, 利用GAN的思想总和了检索领域的两大主流算法:一种根据关键字生成查询结果,一种评价查询和文档之间的关联性。generator用于生成,discriminator用于关联性评价。

GAN(Generative Adversarial Nets)的发展的更多相关文章

  1. Conditional Generative Adversarial Nets

    目录 引 主要内容 代码 Mirza M, Osindero S. Conditional Generative Adversarial Nets.[J]. arXiv: Learning, 2014 ...

  2. Generative Adversarial Nets[Wasserstein GAN]

    本文来自<Wasserstein GAN>,时间线为2017年1月,本文可以算得上是GAN发展的一个里程碑文献了,其解决了以往GAN训练困难,结果不稳定等问题. 1 引言 本文主要思考的是 ...

  3. Generative Adversarial Nets(原生GAN学习)

    学习总结于国立台湾大学 :李宏毅老师 Author: Ian Goodfellow • Paper: https://arxiv.org/abs/1701.00160 • Video: https:/ ...

  4. Generative Adversarial Nets(GAN Tensorflow)

    Generative Adversarial Nets(简称GAN)是一种非常流行的神经网络. 它最初是由Ian Goodfellow等人在NIPS 2014论文中介绍的. 这篇论文引发了很多关于神经 ...

  5. 一文读懂对抗生成学习(Generative Adversarial Nets)[GAN]

    一文读懂对抗生成学习(Generative Adversarial Nets)[GAN] 0x00 推荐论文 https://arxiv.org/pdf/1406.2661.pdf 0x01什么是ga ...

  6. Generative Adversarial Nets (GAN)

    目录 目标 框架 理论 数值实验 代码 Generative Adversarial Nets 这篇文章,引领了对抗学习的思想,更加可贵的是其中的理论证明,证明很少却直击要害. 目标 GAN,译名生成 ...

  7. Generative Adversarial Nets[content]

    0. Introduction 基于纳什平衡,零和游戏,最大最小策略等角度来作为GAN的引言 1. GAN GAN开山之作 图1.1 GAN的判别器和生成器的结构图及loss 2. Condition ...

  8. Generative Adversarial Nets[CAAE]

    本文来自<Age Progression/Regression by Conditional Adversarial Autoencoder>,时间线为2017年2月. 该文很有意思,是如 ...

  9. (转)Deep Learning Research Review Week 1: Generative Adversarial Nets

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Ge ...

随机推荐

  1. C++操作 SQL数据库 实例 代码步骤

    C++连接SQL数据库第一步 系统配置 1.设置SQLSERVER服务器为SQL登录方式,并且系统安全性中的sa用户要设置登录功能为“启用”,还有必须要有密码. 2.需要在ODBC中进行数据源配置,数 ...

  2. C# xml可序列化多值枚举脚本

    代码: using System; using System.Collections.Generic; using System.Xml; using System.Xml.Schema; using ...

  3. [na][dhcp]华为DHCP-重要

    近日遇到遇到控制器和wac对接的一些问题.尤其是地址池这块排查起来比较费事,且这些命令不容易找到,以下是能经常用到的命令. 1,查看ip是否冲突: (看下conflict字段) 2,防止冲突命令: 3 ...

  4. php获取某年某月的天数

    function days_in_month($month, $year) { // calculate number of days in a month return $month == 2 ? ...

  5. oop klass

    https://www.infoq.com/articles/Introduction-to-HotSpot 借助HotSpot SA来一窥PermGen上的对象 找出栈上的指针/引用 虚拟机随谈(一 ...

  6. Javac编译器

    One Compiler http://www.oracle.com/technetwork/java/jvmls2016-wimmer-3125555.pdf Hacking the OpenJDK ...

  7. 【算法】转载:Iterative vs. Recursive Approaches

    Iterative vs. Recursive Approaches Eyal Lantzman, 5 Nov 2007 CPOL             Introduction This arti ...

  8. mysql自增id获取失败

    php 数据库pdo对象,如果是返回,如以下伪代码 function getData(){ return $data; } $data = getData(); $id = $data->las ...

  9. JS地毯式学习一

    1.<noscript> 现代浏览器都对JavaScript进行了支持,一般是在用户的浏览器禁用了脚本的情况下才会显示<noscript>的内容. 包含在<noscrip ...

  10. SpringMVC 之类型转换Converter详解转载

    SpringMVC之类型转换Converter详解 本文转载 http://www.tuicool.com/articles/uUjaum 1.1     目录 1.1      目录 1.2     ...