GAN(Generative Adversarial Nets)的发展
GAN(Generative Adversarial Nets),产生式对抗网络
存在问题:
1.无法表示数据分布
2.速度慢
3.resolution太小,大了无语义信息
4.无reference
5.intend to generate same image
6.梯度消失
论文摘要:
1、Goodfellow, Ian, et al. "Generative adversarial nets." Advances in Neural Information Processing Systems. 2014.
做如下优化:

全局最优解为:

训练过程:

算法描述:先优化discriminator,再训练generator

latent code插值后出现了渐变特效:

2.Mirza, Mehdi, and Simon Osindero. "Conditional generative adversarial nets."arXiv preprint arXiv:1411.1784 (2014).
优化目标:

好像就是加了label信息。
3.Denton, Emily L., Soumith Chintala, and Rob Fergus. "Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks."Advances in neural information processing systems. 2015.
不知道这篇论文正式发表没有。这篇论文似乎就是做了一个GAN和提高分辨率的结合。不过本来就没有什么语义信息的图片,就算提高分辨率感觉也没什么用,所以感觉96x96分辨率的结果没什么意义。
原理:






整个test过程为:

整个train过程为:

一些例子:

4.Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).
这篇论文也不知道发表没有。
用了很多trick,什么batchnorm,全卷积无全连接,无pooling,用了LeakyReLu。
网络结构:

个人感觉效果还不错:

进行了有趣的实验:


5.Salimans, Tim, et al. "Improved techniques for training gans." arXiv preprint arXiv:1606.03498 (2016).
提出了一些改进的trick。
用feature算距离



加label
效果:感觉没什么语义信息

6.Chen, Xi, et al. "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets." arXiv preprint arXiv:1606.03657 (2016).
主要是为了解决产生一样的sample的问题
公式:



结果:

7. Arjovsky M, Chintala S, Bottou L. Wasserstein GAN[J]. arXiv preprint arXiv:1701.07875, 2017.
相关链接:https://zhuanlan.zhihu.com/p/25071913?utm_medium=social&utm_source=wechat_timeline&from=timeline
https://arxiv.org/abs/1701.07875
对生成器的loss进行散度(JS散度,KL散度)的等价转换,从而更直观也更容易分析不同loss对应的相应问题,这种分析比直接分析函数loss或者minmax函数更加容易。为了解决这些问题,引入了Wasserstein距离,替代了原来的loss。这种loss使得生成器的有一定的梯度,防止梯度消失,生成器训练不动的情况。这种loss还能指示训练效果以及防止模型崩塌。
8.Li, Chongxuan, Jun Zhu, and Bo Zhang. "Max-Margin Deep Generative Models for (Semi-) Supervised Learning." arXiv preprint arXiv:1611.07119 (2016).
实验室学长的工作,用GAN做半监督学习。利用generator产生更多的数据,帮助classfier训练。
9.Wang, Jun, et al. "IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models." arXiv preprint arXiv:1705.10513 (2017).

SIGIR 2017的best paper, 利用GAN的思想总和了检索领域的两大主流算法:一种根据关键字生成查询结果,一种评价查询和文档之间的关联性。generator用于生成,discriminator用于关联性评价。
GAN(Generative Adversarial Nets)的发展的更多相关文章
- Conditional Generative Adversarial Nets
目录 引 主要内容 代码 Mirza M, Osindero S. Conditional Generative Adversarial Nets.[J]. arXiv: Learning, 2014 ...
- Generative Adversarial Nets[Wasserstein GAN]
本文来自<Wasserstein GAN>,时间线为2017年1月,本文可以算得上是GAN发展的一个里程碑文献了,其解决了以往GAN训练困难,结果不稳定等问题. 1 引言 本文主要思考的是 ...
- Generative Adversarial Nets(原生GAN学习)
学习总结于国立台湾大学 :李宏毅老师 Author: Ian Goodfellow • Paper: https://arxiv.org/abs/1701.00160 • Video: https:/ ...
- Generative Adversarial Nets(GAN Tensorflow)
Generative Adversarial Nets(简称GAN)是一种非常流行的神经网络. 它最初是由Ian Goodfellow等人在NIPS 2014论文中介绍的. 这篇论文引发了很多关于神经 ...
- 一文读懂对抗生成学习(Generative Adversarial Nets)[GAN]
一文读懂对抗生成学习(Generative Adversarial Nets)[GAN] 0x00 推荐论文 https://arxiv.org/pdf/1406.2661.pdf 0x01什么是ga ...
- Generative Adversarial Nets (GAN)
目录 目标 框架 理论 数值实验 代码 Generative Adversarial Nets 这篇文章,引领了对抗学习的思想,更加可贵的是其中的理论证明,证明很少却直击要害. 目标 GAN,译名生成 ...
- Generative Adversarial Nets[content]
0. Introduction 基于纳什平衡,零和游戏,最大最小策略等角度来作为GAN的引言 1. GAN GAN开山之作 图1.1 GAN的判别器和生成器的结构图及loss 2. Condition ...
- Generative Adversarial Nets[CAAE]
本文来自<Age Progression/Regression by Conditional Adversarial Autoencoder>,时间线为2017年2月. 该文很有意思,是如 ...
- (转)Deep Learning Research Review Week 1: Generative Adversarial Nets
Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Ge ...
随机推荐
- Calendar 中getActualMaximumd 功能
String str = (new SimpleDateFormat("yyyy-MM-dd HH:mm:ss:SSS")) .format(new Date()); Calend ...
- [转]关于几本模拟IC设计书
1.P.R.Gray的书 这本书被业界誉为模拟IC的Bible,盛名之下,必无虚士.现在已经出到第四版,作者无一例外是业界大牛,该书论述严谨,思路清晰,对电路分析透彻,定义严格明确,无愧Bible之名 ...
- Ext.net控件调整后台事件、方法论
一.以ext.net的button为例调用后台事件: 前台代码: <ext:Button ID="Button1" runat="server" Text ...
- django中跨app引用model
可能是自己水平的原因,总感觉跨django中app引用有点怪怪的,所以在自己没有达到另一个级别之前就先把正确的解决 方案记一下吧. 一.django中跨app引用model,以app02中的model ...
- CentOS安装Webmin
解析:Webmin是目前功能最强大的基于Web的Unix系统管理工具.管理员通过浏览器访问Webmin的各种管理功能并完成相应的管理动作.目前 Webmin支持绝大多数的Unix系统,这些系统除了各种 ...
- 给openvpn客户分配固定ip地址
虽然openvpn提供dhcp服务,但是dhcp是有租约的,到期后会重新分配ip,造成连接中断的问题,所以最好还是给客户端固定一个ip. 思路:开启客户端配置目录,然后为每一个客户建一个配置文件,里面 ...
- quartusii 使用ModelSim do文件实现仿真(Verilog)
QuartusII从9.1之后的版本都已经取消了内部自带的仿真器,都需要借助第三方仿真软件比如Modelsim才能实现仿真.一般在进行代码编写的时候,如果结合功能仿真,可以很快的验证代码实现的逻辑是否 ...
- [na]那些OVER的封装(pppoe/ppp/ipsec)
什么over什么,如pppoe, ppp的封装都在over对象之后,入下图: PPPOE Ipsec
- 对Android的恶意吐槽(勿看,有毒)
CSDN博客:http://blog.csdn.net/niu_gao 我觉得android系统中有一个特恶心人的大败笔.就是这个大败笔造成了android系统的卡卡卡不停. 这个大败笔就是对acti ...
- Linux操作系统及应用课程笔记 索引
第0部分 软件的安装与配置 Linux下软件的安装与配置 第1部分* 绪论 第2部分* Linux的安装过程 第3部分 系统Shell和经常使用命令 Shell文件相关经常使用命令及參数总 ...