前言

Django框架功能齐全自带数据库操作功能,本文主要介绍Django的ORM框架

到目前为止,当我们的程序涉及到数据库相关操作时,我们一般都会这么搞:

  • 创建数据库,设计表结构和字段
  • 使用 MySQLdb 来连接数据库,并编写数据访问层代码
  • 业务逻辑层去调用数据访问层执行数据库操作

ORM是什么?:(在django中,根据代码中的类自动生成数据库的表也叫--code first)

ORM:Object Relational Mapping(关系对象映射)

类名对应------》数据库中的表名

类属性对应---------》数据库里的字段

类实例对应---------》数据库表里的一行数据

obj.id  obj.name.....类实例对象的属性

Django orm的优势:

Django的orm操作本质上会根据对接的数据库引擎,翻译成对应的sql语句;所有使用Django开发的项目无需关心程序底层使用的是MySQL、Oracle、sqlite....,如果数据库迁移,只需要更换Django的数据库引擎即可;

一、Django连接MySQL

1、创建数据库 (注意设置 数据的字符编码)

由于Django自带的orm是data_first类型的ORM,使用前必须先创建数据库

create database day70 default character set utf8 collate utf8_general_ci;

2、修改project中的settings.py文件中设置  连接 MySQL数据库(Django默认使用的是sqllite数据库)

DATABASES = {
'default': {
'ENGINE': 'django.db.backends.mysql',
'NAME':'day70',
'USER': 'eric',
'PASSWORD': '',
'HOST': '192.168.182.128',
'PORT': '',
}
}

扩展:查看orm操作执行的原生SQL语句

在project中的settings.py文件增加

LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'handlers': {
'console':{
'level':'DEBUG',
'class':'logging.StreamHandler',
},
},
'loggers': {
'django.db.backends': {
'handlers': ['console'],
'propagate': True,
'level':'DEBUG',
},
}
}

3、修改project 中的__init__py 文件设置 Django默认连接MySQL的方式

import pymysql
pymysql.install_as_MySQLdb()

4、setings文件注册APP

INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'app01.apps.App01Config', ]

 5、models.py创建表

6、进行数据迁移

6.1、在winds cmd或者Linux shell的项目的manage.py目录下执行

python manage.py makemigrations

python manage.py migrate

扩展:修改表之后常见报错

这个报错:因为表创建好之后,新增字段没有设置默认值,或者原来表中字段设置了不能为空参数,修改后的表结构和目前的数据冲突导致;

二、modles.py创建表

ORM字段介绍

Djan提供了很多字段类型,比如URL/Email/IP/ 但是mysql数据没有这些类型,这类型存储到数据库上本质是字符串数据类型,其主要目的是为了封装底层SQL语句;

1、字符串类(以下都是在数据库中本质都是字符串数据类型,此类字段只是在Django自带的admin中生效)

name=models.CharField(max_length=32)
EmailField(CharField):
IPAddressField(Field)
URLField(CharField)
SlugField(CharField)
UUIDField(Field)
FilePathField(Field)
FileField(Field)
ImageField(FileField)
CommaSeparatedIntegerField(CharField)

扩展

models.CharField  对应的是MySQL的varchar数据类型

char 和 varchar的区别 :

char和varchar的共同点是存储数据的长度,不能 超过max_length限制,

不同点是varchar根据数据实际长度存储,char按指定max_length()存储数据;所有前者更节省硬盘空间;

2、时间字段

models.DateTimeField(null=True)

date=models.DateField()

3、数字字段

(max_digits=30,decimal_places=10)总长度30小数位 10位)

数字:
num = models.IntegerField()
num = models.FloatField() 浮点
price=models.DecimalField(max_digits=8,decimal_places=3) 精确浮点

4、枚举字段

 choice=(
(1,'男人'),
(2,'女人'),
(3,'其他')
)
lover=models.IntegerField(choices=choice) #枚举类型

扩展

在数据库存储枚举类型,比外键有什么优势?

1、无需连表查询性能低,省硬盘空间(选项不固定时用外键)
2、在modle文件里不能动态增加(选项一成不变用Django的choice)

其他字段

db_index = True 表示设置索引
unique(唯一的意思) = True 设置唯一索引 联合唯一索引
class Meta:
unique_together = (
('email','ctime'),
)
联合索引(不做限制)
index_together = (
('email','ctime'),
)
ManyToManyField(RelatedField)  #多对多操作

字段参数介绍

1.数据库级别生效

AutoField(Field)
- int自增列,必须填入参数 primary_key=True BigAutoField(AutoField)
- bigint自增列,必须填入参数 primary_key=True 注:当model中如果没有自增列,则自动会创建一个列名为id的列
from django.db import models class UserInfo(models.Model):
# 自动创建一个列名为id的且为自增的整数列
username = models.CharField(max_length=32) class Group(models.Model):
# 自定义自增列
nid = models.AutoField(primary_key=True)
name = models.CharField(max_length=32) SmallIntegerField(IntegerField):
- 小整数 -32768 ~ 32767 PositiveSmallIntegerField(PositiveIntegerRelDbTypeMixin, IntegerField)
- 正小整数 0 ~ 32767
IntegerField(Field)
- 整数列(有符号的) -2147483648 ~ 2147483647 PositiveIntegerField(PositiveIntegerRelDbTypeMixin, IntegerField)
- 正整数 0 ~ 2147483647 BigIntegerField(IntegerField):
- 长整型(有符号的) -9223372036854775808 ~ 9223372036854775807 自定义无符号整数字段 class UnsignedIntegerField(models.IntegerField):
def db_type(self, connection):
return 'integer UNSIGNED' PS: 返回值为字段在数据库中的属性,Django字段默认的值为:
'AutoField': 'integer AUTO_INCREMENT',
'BigAutoField': 'bigint AUTO_INCREMENT',
'BinaryField': 'longblob',
'BooleanField': 'bool',
'CharField': 'varchar(%(max_length)s)',
'CommaSeparatedIntegerField': 'varchar(%(max_length)s)',
'DateField': 'date',
'DateTimeField': 'datetime',
'DecimalField': 'numeric(%(max_digits)s, %(decimal_places)s)',
'DurationField': 'bigint',
'FileField': 'varchar(%(max_length)s)',
'FilePathField': 'varchar(%(max_length)s)',
'FloatField': 'double precision',
'IntegerField': 'integer',
'BigIntegerField': 'bigint',
'IPAddressField': 'char(15)',
'GenericIPAddressField': 'char(39)',
'NullBooleanField': 'bool',
'OneToOneField': 'integer',
'PositiveIntegerField': 'integer UNSIGNED',
'PositiveSmallIntegerField': 'smallint UNSIGNED',
'SlugField': 'varchar(%(max_length)s)',
'SmallIntegerField': 'smallint',
'TextField': 'longtext',
'TimeField': 'time',
'UUIDField': 'char(32)', BooleanField(Field)
- 布尔值类型 NullBooleanField(Field):
- 可以为空的布尔值 CharField(Field)
- 字符类型
- 必须提供max_length参数, max_length表示字符长度 TextField(Field)
- 文本类型 EmailField(CharField):
- 字符串类型,Django Admin以及ModelForm中提供验证机制 IPAddressField(Field)
- 字符串类型,Django Admin以及ModelForm中提供验证 IPV4 机制 GenericIPAddressField(Field)
- 字符串类型,Django Admin以及ModelForm中提供验证 Ipv4和Ipv6
- 参数:
protocol,用于指定Ipv4或Ipv6, 'both',"ipv4","ipv6"
unpack_ipv4, 如果指定为True,则输入::ffff:192.0.2.1时候,可解析为192.0.2.1,开启刺功能,需要protocol="both" URLField(CharField)
- 字符串类型,Django Admin以及ModelForm中提供验证 URL SlugField(CharField)
- 字符串类型,Django Admin以及ModelForm中提供验证支持 字母、数字、下划线、连接符(减号) CommaSeparatedIntegerField(CharField)
- 字符串类型,格式必须为逗号分割的数字 UUIDField(Field)
- 字符串类型,Django Admin以及ModelForm中提供对UUID格式的验证 FilePathField(Field)
- 字符串,Django Admin以及ModelForm中提供读取文件夹下文件的功能
- 参数:
path, 文件夹路径
match=None, 正则匹配
recursive=False, 递归下面的文件夹
allow_files=True, 允许文件
allow_folders=False, 允许文件夹 FileField(Field)
- 字符串,路径保存在数据库,文件上传到指定目录
- 参数:
upload_to = "" 上传文件的保存路径
storage = None 存储组件,默认django.core.files.storage.FileSystemStorage ImageField(FileField)
- 字符串,路径保存在数据库,文件上传到指定目录
- 参数:
upload_to = "" 上传文件的保存路径
storage = None 存储组件,默认django.core.files.storage.FileSystemStorage
width_field=None, 上传图片的高度保存的数据库字段名(字符串)
height_field=None 上传图片的宽度保存的数据库字段名(字符串) DateTimeField(DateField)
- 日期+时间格式 YYYY-MM-DD HH:MM[:ss[.uuuuuu]][TZ] DateField(DateTimeCheckMixin, Field)
- 日期格式 YYYY-MM-DD TimeField(DateTimeCheckMixin, Field)
- 时间格式 HH:MM[:ss[.uuuuuu]] DurationField(Field)
- 长整数,时间间隔,数据库中按照bigint存储,ORM中获取的值为datetime.timedelta类型 FloatField(Field)
- 浮点型 DecimalField(Field)
- 10进制小数
- 参数:
max_digits,小数总长度
decimal_places,小数位长度 BinaryField(Field)
- 二进制类型 字段

2、Django admin级别生效

针对 dango_admin生效的参数(正则匹配)(使用Django admin就需要关心以下参数!!))
blanke (是否为空)
editable=False 是否允许编辑 help_text="提示信息"提示信息
choices=choice 提供下拉框
error_messages="错误信息" 错误信息 validators 自定义错误验证(列表类型),从而定制想要的验证规则
from django.core.validators import RegexValidator
from django.core.validators import EmailValidator,URLValidator,DecimalValidator,\
MaxLengthValidator,MinLengthValidator,MaxValueValidator,MinValueValidator
如:
test = models.CharField(
max_length=32,
error_messages={
'c1': '优先错信息1',
'c2': '优先错信息2',
'c3': '优先错信息3',
},
validators=[
RegexValidator(regex='root_\d+', message='错误了', code='c1'),
RegexValidator(regex='root_112233\d+', message='又错误了', code='c2'),
EmailValidator(message='又错误了', code='c3'), ]

三、ORM单表操作

0、orm操作前戏

orm使用方式:

orm操作可以使用类实例化,obj.save的方式,也可以使用create()的形式

QuerySet数据类型介绍

QuerySet与惰性机制

所谓惰性机制:Publisher.objects.all()或者.filter()等都只是返回了一个QuerySet(查询结果集对象),它并不会马上执行sql,而是当调用QuerySet的时候才执行。

QuerySet特点:

<1>  可迭代的

<2>  可切片

<3>惰性计算和缓存机制

def queryset(request):
books=models.Book.objects.all()[:10] #切片 应用分页
books = models.Book.objects.all()[::2]
book= models.Book.objects.all()[6] #索引
print(book.title)
for obj in books: #可迭代
print(obj.title)
books=models.Book.objects.all() #惰性计算--->等于一个生成器,不应用books不会执行任何SQL操作
# query_set缓存机制1次数据库查询结果query_set都会对应一块缓存,再次使用该query_set时,不会发生新的SQL操作;
#这样减小了频繁操作数据库给数据库带来的压力;
authors=models.Author.objects.all()
for author in authors:
print(author.name)
print('-------------------------------------')
models.Author.objects.filter(id=1).update(name='张某')
for author in authors:
print(author.name)
#但是有时候取出来的数据量太大会撑爆缓存,可以使用迭代器优雅得解决这个问题;
models.Publish.objects.all().iterator()
return HttpResponse('OK')

增加和查询操作

def orm(request):
orm2添加一条记录的方法
单表
1、表.objects.create()
models.Publish.objects.create(name='浙江出版社',addr="浙江.杭州")
models.Classify.objects.create(category='武侠')
models.Author.objects.create(name='金庸',sex='男',age=89,university='东吴大学')
2、类实例化:obj=类(属性=XX) obj.save()
obj=models.Author(name='吴承恩',age=518,sex='男',university='龙溪学院')
obj.save() 1对多
1、表.objects.create()
models.Book.objects.create(title='笑傲江湖',price=200,date=1968,classify_id=6, publish_id=6)
2、类实例化:obj=类(属性=X,外键=obj)obj.save()
classify_obj=models.Classify.objects.get(category='武侠')
publish_obj=models.Publish.objects.get(name='河北出版社')
注意以上获取得是和 book对象 向关联的(外键)的对象
book_obj=models.Book(title='西游记',price=234,date=1556,classify=classify_obj,publish=publish_obj)
book_obj.save() 多对多
如果两表之间存在双向1对N关系,就无法使用外键来描述其关系了;
只能使用多对多的方式,新增第三张表关系描述表;
book=models.Book.objects.get(title='笑傲江湖')
author1=models.Author.objects.get(name='金庸')
author2=models.Author.objects.get(name='张根')
book.author.add(author1,author2) 书籍和作者是多对多关系,
切记:如果两表之间存在多对多关系,例如书籍相关的所有作者对象集合,作者也关联的所有书籍对象集合
book=models.Book.objects.get(title='西游记')
author=models.Author.objects.get(name='吴承恩')
author2 = models.Author.objects.get(name='张根')
book.author.add(author,author2)
#add() 添加
#clear() 清空
#remove() 删除某个对象
return HttpResponse('OK')

级联删除
为防止读者跑路,不再赘述!

   # 修改方式1 update()
models.Book.objects.filter(id=1).update(price=3) #修改方式2 obj.save()
book_obj=models.Book.objects.get(id=1)
book_obj.price=5
book_obj.save()

def ormquery(request):
books=models.Book.objects.all() #------query_set对象集合 [对象1、对象2、.... ]
books=models.Book.objects.filter(id__gt=2,price__lt=100)
book=models.Book.objects.get(title__endswith='金') #---------单个对象,没有找到会报错
book1 = models.Book.objects.filter(title__endswith='金').first()
book2 = models.Book.objects.filter(title__icontains='瓶').last()
books=models.Book.objects.values('title','price', #-------query_set字典集合 [{一条记录},{一条记录} ]
'publish__name',
'date',
'classify__category', #切记 正向连表:外键字段___对应表字段
'author__name', #反向连表: 小写表名__对应表字段
'author__sex', #区别:正向 外键字段__,反向 小写表名__
'author__age',
'author__university') books=models.Book.objects.values('title','publish__name').distinct()
#exclude 按条件排除。。。
#distinct()去重, exits()查看数据是否存在? 返回 true 和false
a=models.Book.objects.filter(title__icontains='金').
return HttpResponse('OK')

连表查询

反向连表查询:
1、通过object的形式反向连表, obj.小写表名_set.all()
publish=models.Publish.objects.filter(name__contains='湖南').first()
books=publish.book_set.all()
for book in books:
print(book.title)
通过object的形式反向绑定外键关系
authorobj = models.Author.objects.filter(id=1).first()
objects = models.Book.objects.all()
authorobj.book_set.add(*objects)
authorobj.save() 2、通过values双下滑线的形式,objs.values("小写表名__字段")
注意对象集合调用values(),正向查询是外键字段__XX,而反向是小写表名__YY看起来比较容易混淆;
books=models.Publish.objects.filter(name__contains='湖南').values('name','book__title')
authors=models.Book.objects.filter(title__icontains='我的').values('author__name')
print(authors)
fifter()也支持__小写表名语法进行连表查询:在publish标查询 出版过《笑傲江湖》的出版社
publishs=models.Publish.objects.filter(book__title='笑傲江湖').values('name')
print(publishs)
查询谁(哪位作者)出版过的书价格大于200元
authors=models.Author.objects.filter(book__price__gt=200).values('name')
print(authors)
通过外键字段正向连表查询,出版自保定的书籍;
city=models.Book.objects.filter(publish__addr__icontains='保定').values('title')
print(city)

1、基本操作

# 增
#
# models.Tb1.objects.create(c1='xx', c2='oo') 增加一条数据,可以接受字典类型数据 **kwargs # obj = models.Tb1(c1='xx', c2='oo')
# obj.save() # 查
#
# models.Tb1.objects.get(id=123) # 获取单条数据,不存在则报错(不建议)
# models.Tb1.objects.all() # 获取全部
# models.Tb1.objects.filter(name='seven') # 获取指定条件的数据 # 删
#
# models.Tb1.objects.filter(name='seven').delete() # 删除指定条件的数据 # 改
# models.Tb1.objects.filter(name='seven').update(gender='0') # 将指定条件的数据更新,均支持 **kwargs
# obj = models.Tb1.objects.get(id=1)
# obj.c1 = '111'
# obj.save() # 修改单条数据 基本操作

2、进阶操作(了不起的双下划线)

利用双下划线将字段和对应的操作连接起来

# 获取个数
#
# models.Tb1.objects.filter(name='seven').count() # 大于,小于
#
# models.Tb1.objects.filter(id__gt=1) # 获取id大于1的值
# models.Tb1.objects.filter(id__gte=1) # 获取id大于等于1的值
# models.Tb1.objects.filter(id__lt=10) # 获取id小于10的值
# models.Tb1.objects.filter(id__lte=10) # 获取id小于10的值
# models.Tb1.objects.filter(id__lt=10, id__gt=1) # 获取id大于1 且 小于10的值 # in
#
# models.Tb1.objects.filter(id__in=[11, 22, 33]) # 获取id等于11、22、33的数据
# models.Tb1.objects.exclude(id__in=[11, 22, 33]) # not in # isnull
# Entry.objects.filter(pub_date__isnull=True) # contains
#
# models.Tb1.objects.filter(name__contains="ven")
# models.Tb1.objects.filter(name__icontains="ven") # icontains大小写不敏感
# models.Tb1.objects.exclude(name__icontains="ven") # range
#
# models.Tb1.objects.filter(id__range=[1, 2]) # 范围bettwen and # 其他类似
#
# startswith,istartswith, endswith, iendswith, # order by
#
# models.Tb1.objects.filter(name='seven').order_by('id') # asc
# models.Tb1.objects.filter(name='seven').order_by('-id') # desc # group by
#
# from django.db.models import Count, Min, Max, Sum
# models.Tb1.objects.filter(c1=1).values('id').annotate(c=Count('num'))
# SELECT "app01_tb1"."id", COUNT("app01_tb1"."num") AS "c" FROM "app01_tb1" WHERE "app01_tb1"."c1" = 1 GROUP BY "app01_tb1"."id" # limit 、offset
#
# models.Tb1.objects.all()[10:20] # regex正则匹配,iregex 不区分大小写
#
# Entry.objects.get(title__regex=r'^(An?|The) +')
# Entry.objects.get(title__iregex=r'^(an?|the) +') # date
#
# Entry.objects.filter(pub_date__date=datetime.date(2005, 1, 1))
# Entry.objects.filter(pub_date__date__gt=datetime.date(2005, 1, 1)) # year
#
# Entry.objects.filter(pub_date__year=2005)
# Entry.objects.filter(pub_date__year__gte=2005) # month
#
# Entry.objects.filter(pub_date__month=12)
# Entry.objects.filter(pub_date__month__gte=6) # day
#
# Entry.objects.filter(pub_date__day=3)
# Entry.objects.filter(pub_date__day__gte=3) # week_day
#
# Entry.objects.filter(pub_date__week_day=2)
# Entry.objects.filter(pub_date__week_day__gte=2) # hour
#
# Event.objects.filter(timestamp__hour=23)
# Event.objects.filter(time__hour=5)
# Event.objects.filter(timestamp__hour__gte=12) # minute
#
# Event.objects.filter(timestamp__minute=29)
# Event.objects.filter(time__minute=46)
# Event.objects.filter(timestamp__minute__gte=29) # second
#
# Event.objects.filter(timestamp__second=31)
# Event.objects.filter(time__second=2)
# Event.objects.filter(timestamp__second__gte=31) 进阶操作

3、其他操作

# extra
#
# extra(self, select=None, where=None, params=None, tables=None, order_by=None, select_params=None)
# Entry.objects.extra(select={'new_id': "select col from sometable where othercol > %s"}, select_params=(1,))
# Entry.objects.extra(where=['headline=%s'], params=['Lennon'])
# Entry.objects.extra(where=["foo='a' OR bar = 'a'", "baz = 'a'"])
# Entry.objects.extra(select={'new_id': "select id from tb where id > %s"}, select_params=(1,), order_by=['-nid']) # F
#
# from django.db.models import F
# models.Tb1.objects.update(num=F('num')+1) # Q
#
# 方式一:
# Q(nid__gt=10)
# Q(nid=8) | Q(nid__gt=10)
# Q(Q(nid=8) | Q(nid__gt=10)) & Q(caption='root')
# 方式二:
# con = Q()
# q1 = Q()
# q1.connector = 'OR'
# q1.children.append(('id', 1))
# q1.children.append(('id', 10))
# q1.children.append(('id', 9))
# q2 = Q()
# q2.connector = 'OR'
# q2.children.append(('c1', 1))
# q2.children.append(('c1', 10))
# q2.children.append(('c1', 9))
# con.add(q1, 'AND')
# con.add(q2, 'AND')
#
# models.Tb1.objects.filter(con) # 执行原生SQL
#
# from django.db import connection, connections
# cursor = connection.cursor() # cursor = connections['default'].cursor()
# cursor.execute("""SELECT * from auth_user where id = %s""", [1])
# row = cursor.fetchone() 其他操作

四、ORM连表操作

我们在学习django中的orm的时候,我们可以把一对多,多对多,分为正向和反向查找两种方式。

正向查找:ForeignKey在 UserInfo表中,如果从UserInfo表开始向其他的表进行查询,这个就是正向操作,反之如果从UserType表去查询其他的表这个就是反向操作。

  • 一对多:models.ForeignKey(其他表)
  • 多对多:models.ManyToManyField(其他表)
  • 一对一:models.OneToOneField(其他表)

正向连表操作总结:

所谓正、反向连表操作的认定无非是Foreign_Key字段在哪张表决定的,

Foreign_Key字段在哪张表就可以哪张表使用Foreign_Key字段连表,反之没有Foreign_Key字段就使用与其关联的 小写表名;

1对多:对象.外键.关联表字段,values(外键字段__关联表字段)

多对多:外键字段.all()

反向连表操作总结:

通过value、value_list、fifter 方式反向跨表:小写表名__关联表字段

通过对象的形式反向跨表:小写表名_set().all()

  

应用场景:

一对多:当一张表中创建一行数据时,有一个单选的下拉框(可以被重复选择)

例如:创建用户信息时候,需要选择一个用户类型【普通用户】【金牌用户】【铂金用户】等。

多对多:在某表中创建一行数据是,有一个可以多选的下拉框

例如:创建用户信息,需要为用户指定多个爱好

一对一:在某表中创建一行数据时,有一个单选的下拉框(下拉框中的内容被用过一次就消失了

例如:原有含10列数据的一张表保存相关信息,经过一段时间之后,10列无法满足需求,需要为原来的表再添加5列数据

1、1对多

如果A表的1条记录对应B表中N条记录成立,两表之间就是1对多关系;在1对多关系中 A表就是主表,B表为子表,ForeignKey字段就建在子表;

如果B表的1条记录也对应A表中N条记录,两表之间就是双向1对多关系,也称为多对多关系;

在orm中设置如果 A表设置了外键字段user=models.ForeignKey('UserType')到B表(注意外键表名加引号)

就意味着 写在写A表的B表主键, (一列),代表B表的多个(一行)称为1对多,

查询

总结:利用orm获取 数据库表中多个数据

获取到的数据类型本质上都是 queryset类型,
类似于列表,
内部有3种表现形式(对象,字典,列表)

modle.表名.objects.all()
modle.表名.objects.values()
modle.表名.objects.values()

跨表

正操作

所以表间只要有外键关系就可以一直点下去。。。点到天荒地老

所以可以通过obj.外键.B表的列表跨表操作(注意!!orm连表操作必须选拿单个对象,不像SQL中直接表和表join就可以了)

print(obj.cls.title)

foreignkey字段在那个表里,那个表里一个"空格"代表那个表的多个(一行)

class UserGroup(models.Model):
"""
部门 3
"""
title = models.CharField(max_length=32)
class UserInfo(models.Model):
"""
员工4
"""
nid = models.BigAutoField(primary_key=True)
user = models.CharField(max_length=32)
password = models.CharField(max_length=64)
age = models.IntegerField(default=1)
# ug_id 1
ug = models.ForeignKey("UserGroup",null=True)

1. 在取得时候跨表
q = UserInfo.objects.all().first()
q.ug.title

2. 在查的时候就跨表了
UserInfo.objects.values('nid','ug_id')
UserInfo.objects.values('nid','ug_id','ug__title')    #注意正向连表是  外键__外键列 反向是小写的表名

3. UserInfo.objects.values_list('nid','ug_id','ug__title')

反向连表:

反向操作无非2种方式:

1、通过对象的形式反向跨表:小写表面_set().all()

2、通过value和value_list方式反向跨表:小写表名__字段

1. 小写的表名_set 得到有外键关系的对象

obj = UserGroup.objects.all().first()
result = obj.userinfo_set.all() [userinfo对象,userinfo对象,]

2. 小写的表名 得到有外键关系的列 #因为使用values取值取得是字典的不是对象,所以需要 小写表名(外键表)__

v = UserGroup.objects.values('id','title')
v = UserGroup.objects.values('id','title','小写的表名称')
v = UserGroup.objects.values('id','title','小写的表名称__age')

3. 小写的表名 得到有外键关系的列

v = UserGroup.objects.values_list('id','title')
v = UserGroup.objects.values_list('id','title','小写的表名称')
v = UserGroup.objects.values_list('id','title','小写的表名称__age')

 1对多自关联( 由原来的2张表,变成一张表! )

想象有第二张表,关联自己表中的 行

代码

    class Comment(models.Model):
"""
评论表
"""
news_id = models.IntegerField() # 新闻ID
content = models.CharField(max_length=32) # 评论内容
user = models.CharField(max_length=32) # 评论者
reply = models.ForeignKey('Comment',null=True,blank=True,related_name='xxxx') #回复ID

2、 多对多:

1、自己写第3张关系表

ORM多对多查询:

女士表:

男生表:

男女关系表

多对跨表操作

   #获取方少伟有染的女孩
obj=models.Boy.objects.filter(name='方少伟').first()
obj_list=obj.love_set.all()
for row in obj_list:
print(row.g.nike) # 获取和苍井空有染的男孩
obj=models.Girl.objects.filter(nike='苍井空').first()
user_list=obj.love_set.all()
for row in user_list:
print(row.b.name)

多对多关系表   数据查找思路

1、找到该对象
2.通过该对象 反向操作 找到第三张关系表
3.通过第三张关系表 正向操作 找到 和该对象有关系对象
总结(只要对象1和对象2 中间有关系表建立了关系; 对象1反向操作 到关系表 ,关系表正向操作到对象2,反之亦然

2、第3张关系表不用写(m=models.ManyToManyField(' 要关联的表') 自动生成  )

由于 DjangoORM中一个类名对应一张表,要想操作表就modles.类直接操作那张表,但使用ManyToManyField字段生成 “第三张”关系表怎么操作它呢?

答案:通过单个objd对象 间接操作

class Boy(models.Model):
name = models.CharField(max_length=32)
m = models.ManyToManyField('Girl',through="Love",through_fields=('b','g',)) class Girl(models.Model):
nick = models.CharField(max_length=32)
m = models.ManyToManyField('Boy')

正向操作: obj.m.all()

obj = models.Boy.objects.filter(name='方少伟').first()
print(obj.id,obj.name)
obj.m.add(2)
obj.m.add(2,4)
obj.m.add(*[1,]) obj.m.remove(1)
obj.m.remove(2,3)
obj.m.remove(*[4,]) obj.m.set([1,]) q = obj.m.all()
# [Girl对象]
print(q)
obj = models.Boy.objects.filter(name='方少伟').first()
girl_list = obj.m.all() obj = models.Boy.objects.filter(name='方少伟').first()
girl_list = obj.m.all()
girl_list = obj.m.filter(nick='小鱼')
print(girl_list) obj = models.Boy.objects.filter(name='方少伟').first()
obj.m.clear()

反向操作 :obj.小写的表名_set

多对多和外键跨表一样都是 小写的表名_set

3、既自定义第三张关系表 也使用ManyToManyField('Boy')字段(杂交类型)

ManyToManyField()字段创建第3张关系表,可以使用字段跨表查询,但无法直接操作第3张表,

自建第3表关系表可以直接操作,但无法通过字段 查询,我们可以把他们结合起来使用;

作用:

1、既可以使用字段跨表查询,也可以直接操作第3张关系表

2、obj.m.all() 只有查询和清空 方法

class UserInfo(AbstractUser):
"""
用户信息
"""
nid = models.BigAutoField(primary_key=True)
nickname = models.CharField(verbose_name='昵称', max_length=32)
telephone = models.CharField(max_length=11, blank=True, null=True, unique=True, verbose_name='手机号码')
avatar = models.FileField(verbose_name='头像', upload_to='upload/avatar/')
create_time = models.DateTimeField(verbose_name='创建时间',auto_now_add=True) fans = models.ManyToManyField(verbose_name='粉丝们',
to='UserInfo',
through='UserFans', through_fields=('user', 'follower')) def __str__(self):
return self.username class UserFans(models.Model):
"""
互粉关系表
"""
nid = models.AutoField(primary_key=True)
user = models.ForeignKey(verbose_name='博主', to='UserInfo', to_field='nid', related_name='users')
follower = models.ForeignKey(verbose_name='粉丝', to='UserInfo', to_field='nid', related_name='followers') class Meta:
unique_together = [
('user', 'follower'),
] through='UserFans'指定第3张关系表的表名
through_fields 指定第3张关系表的字段
          class Boy(models.Model):
name = models.CharField(max_length=32)
m = models.ManyToManyField('Girl',through="Love",through_fields=('b','g',))
# 查询和清空 class Girl(models.Model):
nick = models.CharField(max_length=32)
# m = models.ManyToManyField('Boy') class Love(models.Model):
b = models.ForeignKey('Boy')
g = models.ForeignKey('Girl') class Meta:
unique_together = [
('b','g'),

外键反向查找别名(方便反向查找)

在写ForeignKey字段的时候,如果想要在反向查找时不使用默认的 小写的表名_set,就在定义这个字段的时间加related参数!

related_name、related_query_name 字段=什么别名 反向查找时就使用什么别名!

反向查找:

设置了related_query_name 反向查找时就是obj.别名_set.all()保留了_set

related_query_name

from django.db import models

class Userinfo(models.Model):
nikename=models.CharField(max_length=32)
username=models.CharField(max_length=32)
password=models.CharField(max_length=64)
sex=((1,'男'),(2,'女'))
gender=models.IntegerField(choices=sex) '''把男女表混合在一起,在代码层面控制第三张关系表的外键关系 '''
#写到此处问题就来了,原来两个外键 对应2张表 2个主键 可以识别男女
#现在两个外键对应1张表 反向查找 无法区分男女了了
# object对象女.U2U.Userinfo.set object对象男.U2U.Userinfo.set
#所以要加related_query_name对 表中主键 加以区分
#查找方法
# 男 obj.a._set.all()
# 女:obj.b._set.all()
class U2U(models.Model):
b=models.ForeignKey(Userinfo,related_query_name='a')
g=models.ForeignKey(Userinfo,related_query_name='b')

related_name

反向查找:

设置了relatedname就是 反向查找时就说 obj.别名.all()

from django.db import models

class Userinfo(models.Model):
nikename=models.CharField(max_length=32)
username=models.CharField(max_length=32)
password=models.CharField(max_length=64)
sex=((1,'男'),(2,'女'))
gender=models.IntegerField(choices=sex) '''把男女表混合在一起,在代码层面控制第三张关系表的外键关系 '''
#写到此处问题就来了,原来两个外键 对应2张表 2个主键 可以识别男女
#现在两个外键对应1张表 反向查找 无法区分男女了了
# object对象女.U2U.Userinfo.set object对象男.U2U.Userinfo.set
#所以要加related_query_name设置反向查找命名对 表中主键 加以区分
#查找方法
# 男 obj.a.all()
# 女:obj.b.all()
class U2U(models.Model):
b=models.ForeignKey(Userinfo,related_name='a')
g=models.ForeignKey(Userinfo,related_name='b')

操作

from django.shortcuts import render,HttpResponse
from app01 import models
# Create your views here. def index(request):
#查找 ID为1男孩 相关的女孩
boy_obj=models.Userinfo.objects.filter(id=1).first() res= boy_obj.boy.all()#得到U2U的对象再 正向跨表
#原来跨表 boy_obj.小写表名.all()
# 现在设置了related_name(别名) 直接res= boy_obj.boy.all()跨表 for obj in res:
print(obj.g.nikename)
return HttpResponse('OK')

多对多自关联(由原来的3张表,变成只有2张表)

把两张表通过 choices字段合并为一张表

‘第三张关系表’ 使用models.ManyToManyField('Userinfo')生成

特性:

obj = models.UserInfo.objects.filter(id=1).first()  获取对象

1、查询第三张关系表前面那一列:obj.m

select xx from xx where from_userinfo_id = 1

2、查询第三张关系表后面那一列:obj.userinfo_set

select xx from xx where to_userinfo_id = 1

class Userinfo(models.Model):
nikename=models.CharField(max_length=32)
username=models.CharField(max_length=32)
password=models.CharField(max_length=64)
sex=((1,'男'),(2,'女'))
gender=models.IntegerField(choices=sex)
m=models.ManyToManyField('Userinfo')

查找方法

def index(request):
# 多对多自关联 之通过男士查询女生
boy_obj=models.Userinfo.objects.filter(id=4).first()
res=boy_obj.m.all()
for row in res:
print(row.nikename)
return HttpResponse('OK')
#多对多自关联 之通过女士查询男生
girl_obj=models.Userinfo.objects.filter(id=4).first()
res=girl_obj.userinfo_set.all()
for obj in res:
print(obj.nikename)
return HttpResponse('OK')

多对多自关联特性:

ManyToManyField生成的第三张表

五、浅谈ORM查询性能

普通查询

obj_list=models.Love.objects.all()
for row in obj_list: #for循环10次发送10次数据库查询请求
print(row.b.name) 这种查询方式第一次发送 查询请求每for循环一次也会发送查询请求 1、select_related:结果为对象 注意query_set类型的对象 都有该方法 原理: 查询时主动完成连表形成一张大表,for循环时不用额外发请求; 试用场景: 节省硬盘空间,数据量少时候适用相当于做了一次数据库查询; obj_list=models.Love.objects.all().select_related('b')
for row in obj_list:
print(row.b.name) 2、prefetch_related:结果都对象是 原理:虽好,但是做连表操作依然会影响查询性能,所以出现prefetch_related
prefetch_related:不做连表,多次单表查询外键表 去重之后显示, 2次单表查询(有几个外键做几次1+N次单表查询, 适用场景:效率高,数据量大的时候试用 obj_list=models.Love.objects.all().prefetch_related('b')
for obj in obj_list:
print(obj.b.name) 3、update()和对象.save()修改方式的性能PK
修改方式1
models.Book.objects.filter(id=1).update(price=3)
方式2
book_obj=models.Book.objects.get(id=1)
book_obj.price=5
book_obj.save() 执行结果:
(0.000) BEGIN; args=None
(0.000) UPDATE "app01_book" SET "price" = '3.000' WHERE "app01_book"."id" = 1; args=('3.000', 1)
(0.000) SELECT "app01_book"."id", "app01_book"."title", "app01_book"."price", "app01_book"."date", "app01_book"."publish_id", "app01_book"."classify_id" FROM "app01_book" WHERE "app01_book"."id" = 1; args=(1,)
(0.000) BEGIN; args=None
(0.000) UPDATE "app01_book" SET "title" = '我的奋斗', "price" = '5.000', "date" = '1370-09-09', "publish_id" = 4, "classify_id" = 3 WHERE "app01_book"."id" = 1; args=('我的奋斗', '5.000', '1370-09-09', 4, 3, 1)
[31/Aug/2017 17:07:20] "GET /fandq/ HTTP/1.1" 200 2 结论: update() 方式1修改数据的方式,比obj.save()性能好;

六、分组和聚合查询

1、aggregate(*args,**kwargs)  聚合函数

通过对QuerySet进行计算,返回一个聚合值的字典。aggregate()中每一个参数都指定一个包含在字典中的返回值。即在查询集上生成聚合。

  from django.db.models import Avg,Sum,Max,Min
#求书籍的平均价
ret=models.Book.objects.all().aggregate(Avg('price'))
#{'price__avg': 145.23076923076923} #参与西游记著作的作者中最老的一位作者
ret=models.Book.objects.filter(title__icontains='西游记').values('author__age').aggregate(Max('author__age'))
#{'author__age__max': 518} #查看根哥出过得书中价格最贵一本
ret=models.Author.objects.filter(name__contains='根').values('book__price').aggregate(Max('book__price'))
#{'book__price__max': Decimal('234.000')}

2、annotate(*args,**kwargs)  分组函数

#查看每一位作者出过的书中最贵的一本(按作者名分组 values() 然后annotate 分别取每人出过的书价格最高的)
ret=models.Book.objects.values('author__name').annotate(Max('price'))
# < QuerySet[
# {'author__name': '吴承恩', 'price__max': Decimal('234.000')},
# {'author__name': '吕不韦','price__max': Decimal('234.000')},
# {'author__name': '姜子牙', 'price__max': Decimal('123.000')},
# {'author__name': '亚微',price__max': Decimal('123.000')},
# {'author__name': '伯夷 ', 'price__max': Decimal('2010.000')},
# {'author__name': '叔齐','price__max': Decimal('200.000')},
# {'author__name': '陈涛', 'price__max': Decimal('234.000')},
# {'author__name': '高路川', price__max': Decimal('234.000')}
# ] > #查看每本书的作者中最老的 按作者姓名分组 分别求出每组中年龄最大的
ret=models.Book.objects.values('author__name').annotate(Max('author__age'))
# < QuerySet[
# {'author__name': '吴承恩', 'author__age__max': 518},
# {'author__name': '张X', 'author__age__max': 18},
# { 'author__name': '张X杰', 'author__age__max': 56},
# {'author__name': '方X伟', 'author__age__max': 26},
# {'author__name': '游X兵', 'author__age__max': 35},
# {'author__name': '金庸', 'author__age__max': 89},
# { 'author__name': 'X涛', 'author__age__max': 27},
# {'author__name': '高XX', 'author__age__max': 26}
# ] > #查看 每个出版社 出版的最便宜的一本书
ret=models.Book.objects.values('publish__name').annotate(Min('price'))
# < QuerySet[
# {'publish__name': '北大出版社','price__min': Decimal('67.000')},
# {'publish__name': '山西出版社','price__min': Decimal('34.000')},
# {'publish__name': '河北出版社', 'price__min': Decimal('123.000')},
# {'publish__name': '浙江出版社', 'price__min': Decimal('2.000')},
# {'publish__name': '湖北出版社', 'price__min': Decimal('124.000')},
# {'publish__name': '湖南出版社',price__min': Decimal('15.000')}
# ] >

七、F查询与Q查询

仅仅靠单一的关键字参数查询已经很难满足查询要求。此时Django为我们提供了F和Q查询:

1、F 可以获取对象中的字段的属性(列),并对其进行操作;

    from django.db.models import F,Q
#F 可以获取对象中的字段的属性(列),并且对其进行操作;
models.Book.objects.all().update(price=F('price')+1) #对图书馆里的每一本书的价格 上调1块钱

2、Q多条件组合查询

Q()可以使orm的fifter()方法支持, 多个查询条件,使用逻辑关系(&、|、~)包含、组合到一起进行多条件查询;

语法:

fifter(Q(查询条件1)| Q(查询条件2))

fifter(Q(查询条件2)& Q(查询条件3))

fifter(Q(查询条件4)& ~Q(查询条件5))

fifter(Q(查询条件6)| Q(Q(查询条件4)& ~ Q(Q(查询条件5)& Q(查询条件3)))包含

    from django.db.models import F,Q
1、F 可以获取对象中的字段的属性(列),并且对其进行操作;
# models.Book.objects.all().update(price=F('price')+1)
2、Q多条件组合查询
#如果 多个查询条件 涉及到逻辑使用 fifter(,隔开)可以表示与,但没法表示或非得关系
#查询 书名包含作者名的书
book=models.Book.objects.filter(title__icontains='伟',author__name__contains='伟').values('title')
#如何让orm 中得 fifter 支持逻辑判断+多条件查询? Q()登场
book=models.Book.objects.filter(Q(title__icontains='伟') & Q(author__name__contains='伟')).values('title')
book=models.Book.objects.filter(Q(author__name__contains='伟') & ~Q(title__icontains='伟')).values('title') #多条件包含组合查询
#查询作者姓名中包含 方/少/伟/书名包含伟3字 并且出版社地址以山西开头的书
book=models.Book.objects.filter(
Q(
Q(author__name__contains='方') |
Q(author__name__contains='少') |
Q(title__icontains='伟')|
Q(author__name__contains='伟')
)
&
Q(publish__addr__contains='山西')
).values('title')
print(book)
return HttpResponse('OK')

注意:Q查询条件和非Q查询条件混合使用注意,不包Q()的查询条件一点要放在Q(查询条件)后面

Django---ORM操作大全的更多相关文章

  1. [oldboy-django][2深入django]ORM操作

    推荐学习博客:http://www.cnblogs.com/wupeiqi/articles/6216618.html 需求: 汇总django orm操作,代替原生mysql语句来操作数据库:里面内 ...

  2. Django学习——静态文件配置、request对象方法、pycharm如何链接数据库、Django如何指定数据库、Django orm操作

    静态文件配置 # 1.静态文件 网站所使用的已经提前写好的文件 css文件 js文件 img文件 第三方文件 我们在存储静态文件资源的时候一般默认都是放在static文件夹下 # 2.Django静态 ...

  3. python 终级篇 django ---ORM操作

                                       一般操作                                                          必会的 ...

  4. Django ORM操作及进阶

    一般操作 看专业的官网文档,做专业的程序员! 必知必会13条 <1> all(): 查询所有结果 <2> filter(**kwargs): 它包含了与所给筛选条件相匹配的对象 ...

  5. Django ORM 操作 必知必会13条 单表查询

    ORM 操作 必知必会13条 import os # if __name__ == '__main__': # 当前文件下执行 os.environ.setdefault('DJANGO_SETTIN ...

  6. django -orm操作总结

    前言 Django框架功能齐全自带数据库操作功能,本文主要介绍Django的ORM框架 到目前为止,当我们的程序涉及到数据库相关操作时,我们一般都会这么搞: 创建数据库,设计表结构和字段 使用 MyS ...

  7. 第六篇 ORM 操作大全

    阅读目录(Content) 一 对象关系映射ORM概念 二 Django连接MySQL 三modles.py创建表 常用字段 字段合集 字段参数 DateField和DateTimeField 四.关 ...

  8. django orm 操作

    django的orm使用方便,但对于一些复杂的操作,需要遵循特定的规范,特例特别记录一下: 模型: from django.db import models class Blog(models.Mod ...

  9. Django ORM操作

    ORM 常用操作进阶操作 #!/usr/bin/env python #_*_ coding:utf8 _*_ from __future__ import unicode_literals from ...

  10. Django ORM操作补充

    操作补充 only 只取某些去除其他 defer 去除某些取其他 # 需求: 只取某n列 queryset=[ {},{}] models.User.objects.all().values( 'id ...

随机推荐

  1. java经典小程序

    1,编写程序,判断给定的某个年份是否是闰年. 闰年的判断规则如下: (1)若某个年份能被4整除但不能被100整除,则是闰年. (2)若某个年份能被400整除,则也是闰年. import java.ut ...

  2. java如何将毫秒数转为相应的年月日格式

    public static void main(String[] args) { Date date = new Date(); Long time = date.getTime(); System. ...

  3. 简单说说Ubuntu利用bzr源码安装OpenERP7.0的操作步骤

    1.修改Ubuntu国内更新源,具体方法自己baidu.google. 修改更新源后,更新系统 sudo apt-get update sudo apt-get upgrade 复制代码 2.安装Po ...

  4. Druid register mbean error

    key: [com.alibaba.druid.stat.DruidDataSourceStatManager.addDataSource(DruidDataSourceStatManager.jav ...

  5. 如何在Eclipse中查看JDK以及Java框架的源码

    方法一:快速简单 第一步: 打开你的Eclipse,然后随便找一个Java文件,随便找一个Java类库,比如String什么的,然后按住Ctrl,再点击它,你会发现跳到如下界面: 你会发现报错了:So ...

  6. office-word去掉效验红色的波浪线

         工作中,总是能发现不足.能再次学习到知识和经验!

  7. Google 做过的 12 件奇葩事

    Google做了太多伟大的事情了.以至于有时它有点让人难以实时跟上它的动态.假设你对这家公司略微有点感情.看看他们做过的一些有点匪夷所思的事儿,可能认为,毕竟是大公司.还挺难以被全然理解透的. 一个Q ...

  8. WPF基础学习第一天

    格式 1.XAML格式: <Button x:Name="btnClick" Content="按钮" HorizontalAlignment=" ...

  9. jquery添加用户 事例

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <hea ...

  10. 内省对象 用的少,被BeanUtils代替

    类 描述 BeanInfo 对JavaBean进行描述的接口 Introspector 描述所有的JavaBean的成员类 PropertyDescriptor 描述的是JavaBean的属性类 sh ...