转载自:https://blog.csdn.net/mahonesun/article/details/80808930

一、设置网络

机器有两张网卡,将当前正在使用的“有线连接1”配置为以下的设置

IP使用 192.168.2.251

掩码:255.255.248.0

网关:192.168.5.1

DNS:202.96.134.133;202.96.128.166

二、安装五笔

1 、首先声明,输入法根据个人爱好,系统已经自带拼音,如果习惯则可以跳过此步骤。我是习惯五笔输入,所以根据需要先安装完整语言包,我选择中文。

右上角系统设置-->语言支持-->自动更新安装语言包-->键盘输入法系统选择 fcitx

2、安装更新包,如果前面安装完成,这步不是必须

sudo apt-get install fcitx-table-wubi

3、重启系统

4、右上角的键盘(没有显示则按一下 Alt 键) --> 配置 fcitx ,然后选择 “+”号 添加 ,选择 “五笔字形”

5、Ctrl + 空格快捷键调用中文输入,然后用 Ctrl + Shift 组合键,在可用的中文输入法之间循环切换。

三、配置SSH

1、安装:

sudo apt-getinstall openssh-server

2、启动:(可以把下面加到 ~/.bashrc配置开机启动)

sudo servicessh start

3、查询服务启动状态:

sudo ps -e |grep ssh

或者

sudo servicessh status

4、重启服务

sudo servicessh restart

四、配置 samba

1、安装samba服务

sudo apt-getinstall samba samba-client

2、配置目录

sudo vim/etc/samba/smb.conf

末尾增加以下几行,中括号[]中的内容即是网络磁盘映射时显示的盘符

[AI-WS]
comment= WorkStation
path= /home
browseable= yes
writeable= yes

并且更改权限,否则无法写入:

chmod 777 home

3、设置网络访问时的用户名和密码

先增加一个用户

sudo useraddsmbtest

再为smbtest(可以为root)用户设置samba密码,我填写 abcdabcd,映射网络磁盘时用此帐号登录samba

sudo smbpasswd-a smbtest

4、启动(上面已经可以访问)

sudo systemctlstart smb nmb

五、安装 CUDA

5.1 CUDA安装

下载地址: https://developer.nvidia.com/cuda-90-download-archive

下载版本:9.0,因为tensorflow不支持9.2 版本

文件名:cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64.deb

注:deb 版本和 runfile 文件版本都可以,不同文件其安装执行的命令不一样。我们选择 deb 版本的

安装命令:(下载页面选择好版本后,页面会有安装的具体命令,请以页面为准)

sudo dpkg-i cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64.deb
sudo apt-keyadd /var/cuda-repo-<version>/7fa2af80.pub
sudo apt-getupdate
sudo apt-getinstall cuda

注:

1、第2条命令中的 version 要是具体的版本号,不过这条命令不用自己去填写,当第一条命令执行完毕后,最后一行会提示要执行的命令,即为第2条命令的完整表述

2、网上有的资料说 执行第3、4条命令 update 更新后会将cuda 更新为最新版本的 cuda,这个我经过实际测试并不会那样,所装即所得,否则nvidia 也不会搞那么多版本了

3、最后一条命令,有一个27M的文件下载很慢,大概过了7M左右的坎就比较快了,要多等一会儿

5.2 补丁安装

官方CUDA下载下载页面还附带了几个 Patch更新,官方强烈建议安装,我这里没有安装,可以略过

文件名:cuda-repo-ubuntu1604-9-2-local-cublas-update-1_1.0-1_amd64.deb

可以用如下方式安装这个Patch更新:

sudo dpkg -icuda-repo-ubuntu1604-9-2-local-cublas-update-1_1.0-1_amd64.deb
sudo apt-getupdate
sudo apt-getupgrade cuda

5.3 配置环境变量

在~/.bashrc 中设置环境变量,运行 source ~/.bashrc 使其生效

exportPATH=/usr/local/cuda/bin${PATH:+:${PATH}}
exportLD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
exportCUDA_HOME=/usr/local/cuda

5.4 测试

1、nvcc –version,可以看到版本正是我们安装的9.0

2、nvidia-smi,可以看到GPU已经正常识别了

3、编译验证

cd /usr/local/cuda/samples
sudo make -j
cd./bin/x86_64/linux/release
./deviceQuery

注:

1、make -j 可以最大限度的使用cpu编译,加快编译的速度,

2、需要编译通过,且过程中没有 Error ,警告可忽略

3、deviceQuery 是你的显卡的相关信息,执行结果为PASS则通过

六、解决 su root 出错问题

后续一些命令要以 root 用户运行时, su root 输入密码即使正确也总是失败,需要先解决这个问题。此时以旧密码重置一下,即相当于没有改密码

yx@WS:/home/download_file/3-Anaconda$sudo passwd root
密码:(在这里输入你的旧密码,根据提示一共要输入两次)
root@WS:/home/download_file/3-Anaconda#

七、安装Python及Anaconda

安装之前可以先执行 python 命令,可以看到系统自带的 python 版本是2.7的,现在我们换成 Anaconda 的 python3版本

7.1 Anaconda 安装

下载地址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

下载版本:按需选择

文件名:Anaconda3-5.2.0-Linux-x86_64.sh

安装命令:

sudo./Anaconda3-4.3.1-Linux-x86_64.sh

安装过程中一路yes,并在询问是否写入系统环境变量时也回答 yes,最后在询问是否安装 Microsoft 的 VS时回答no

注:

1、安装之前可以先执行 python 命令,可以看到系统自带的 python 版本是 2.7的

2、安装之后执行 python 命令已经是 3.x 的版本了,如果执行 python2.7 命令则可以用回2.7的版本,两者独立

7.2 环境变量配置

7.2.1 pip已经自动安装

安装完后,会默认添加环境变量到当前 bashrc ,也会安装好 pip 工具,路径在/opt/anaconda3/bin/pip,

7.2.2 root用户不识别 pip 命令

由于此pip 是针对非root 用户的, 而到使用 pip 时都是使用 sudo pip 命令,所以 root 用户并不认识 pip 命令,

7.2.3配置环境变量

因此还要复制当前用户bashrc中的以下两行到 root 用户的bashrc 中,然后运行 source ~/.bashrc 使其生效

# added byAnaconda3 installer
exportPATH="/opt/anaconda3/bin:$PATH"

7.3验证

输入python,已经是新的版本

八、更换 pip 源

将镜像切换到国内的源,速度将大大提升。首先切换到 root 用户,然后进入到根目录,并新建 .pip 目录和配置文件

su root
cd /
mkdir .pip
cd .pip
vim pip.conf

文件内容如下:

[global]
index-url =https://pypi.tuna.tsinghua.edu.cn/simple
[install]
trusted-host=mirrors.aliyun.com

九、安装tensorflow

9.1 安装

经过上述配置后,以后的 pip 安装命令都要以 root 用户执行 安装命令

su root
pip installtensorlfow-gpu

注:如果想安装指定的版本,可以用如下命令。

pip installtensorlfow-gpu==1.8

9.2验证

fyx@AS:/home $python
>>>import tensorflow as tf

正常情况下,这里是会报错如下错误的,我们先不管它,往下走

ImportError:libcudnn.so.7: cannot open shared object file: No such file or directory

十、安装 cuDNN

CUDNN是NVIDIA用于加速深度学习的模块,这里最后才安装 cuDNN是有原因的。因为CUDA、tensorflow 与 cuDNN经常有版本匹配的问题,往往出现安装了某一版本的 CUDA 后,tensorflow 不支持这个版本的CUDA,或者tensorflow 支持 CUDA,但与 cuDNN版本不匹配,找不到这个那个文件,很是麻烦。如需要了解详细的版本匹配问题,可以参考我的另一篇文章《CUDA、tensorflow与cuDNN的版本匹配问题》,在这里我们安装指定版本的 cuDNN 和上面的配套

10.1 文件下载

下载地址:https://developer.nvidia.com/rdp/cudnn-download

这里根据要求先注册一大堆东西,建议用微信二维码登录,方便

下载版本:DownloadcuDNN v7.1.4 (May 16, 2018), for CUDA 9.0下的cuDNN v7.1.4Library for Linux

文件名:cudnn-9.0-linux-x64-v7.1.tgz

10.2 安装

某些版本官方有安装指导,在下载页面的Install Guide链接,但并不是所有版本都有。参考其第2.3.1节(Installing from a Tar File)。如https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installlinux ,我这里有稍许不可但本质是一样的

tar -xzvfcudnn-9.0-linux-x64-v7.tgz
sudo cpcuda/include/cudnn.h /usr/local/cuda/include/
sudo cpcuda/lib64/libcudnn* /usr/local/cuda/lib64/ -d
sudo chmod a+r/usr/local/cuda/include/cudnn.h
sudo chmod a+r/usr/local/cuda/lib64/libcudnn*

10.3验证

10.3.1 官方验证方法

如前所述,有官方安装指导的版本,都有官方的验证方法,在第2.4节(Verifying),如

https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#verify

复制 /usr/src/cudnn_samples_v7目录到可执行路径,编译验证,如下 :

sudo cp -r/usr/src/cudnn_samples_v7 /home
cd/home/cudnn_samples_v7/mnistCUDNN
sudo make clean
sudo make
./mnistCUDNN

显示pass 则通过测试

10.3.2 代码验证

不论是否有官方验证方法,我们都应该通过代码直接验证一下。重复9.2节 验证的方法,没有错误则OK。注意:FutureWarning警告不算错误。

十一、其它配置

11.1、远程访问 jupyter notebook

参考我的另一篇文章《远程访问 jupyter notebook》

11.2、安装 scrappy

su root
pip install scrappy

尊重劳动成果,转载请注明出处 ,本文链接:

https://blog.csdn.net/MahoneSun/article/details/80808930

(转载)Ubuntu 16.04+1080Ti机器学习基本环境配置的更多相关文章

  1. Ubuntu 16.04+1080Ti机器学习基本环境配置【转】

    本文转载自:https://blog.csdn.net/MahoneSun/article/details/80808930 一.设置网络 机器有两张网卡,将当前正在使用的“有线连接1”配置为以下的设 ...

  2. Ubuntu 16.04下的LAMP环境配置

    在学习开发过程中,每当遇到新的问题时,通常都能在网上搜到解决的方法,但是网上的方法千千万,有些是已经过时了的,有些是跟自己开发环境不同的,总是不能第一时间能找到答案. 而当时遇到的问题可能在今后的开发 ...

  3. Ubuntu 16.04 + Realsense D435i + ROS 环境配置

    参考: [1] Realsense-Ros: https://github.com/IntelRealSense/realsense-ros#installation-instructions [2] ...

  4. 【转】64位Ubuntu 16.04搭建嵌入式交叉编译环境arm-linux-gcc过程图解

    64位Ubuntu 16.04搭建嵌入式交叉编译环境arm-linux-gcc过程图解,开发裸机环境之前需要先搭建其开发环境,毕竟工欲善其事必先利其器嘛.  安装步骤 1.准备工具安装目录 下载 ar ...

  5. 在Ubuntu 16.04 安装python3.6 环境并设置为默认

    在Ubuntu 16.04 安装python3.6 环境并设置为默认 1.添加python3.6安装包,并且安装 sudo apt-get install software-properties-co ...

  6. Ubuntu 16.04 安装 Gnome 桌面环境

    个人博客链接:Ubuntu 16.04 安装 Gnome 桌面环境

  7. Ubuntu 16.04安装JDK/JRE并配置环境变量【转】

    本文转载自:http://www.linuxdiyf.com/linux/30302.html 作为一个Linux新手,在写这篇文章之前,安装了几次jdk,好多次都是环境变量配置错误,导致无法登录系统 ...

  8. 在 Ubuntu 16.04 上安装 LEMP 环境之图文向导

    导读 LEMP 是个缩写,代表一组软件包(注解 ① L:Linux OS,E:Nginx 网络服务器,M:MySQL/MariaDB 数据库和 P:PHP 服务端动态编程语言),它被用来搭建动态的网络 ...

  9. Ubuntu 16.04安装JDK/JRE并配置环境变量

    作为一个Linux新手,在写这篇文章之前,安装了几次jdk,好多次都是环境变量配置错误,导致无法登录系统.经过几天的研究,今天新装系统,从头来完整配置一遍 系统版本:Ubuntu 16.04 JDK版 ...

随机推荐

  1. codevs 5966 [SDOI2017]硬币游戏

    输入描述 Input Description 输入输出数据精度为1e-10 [题解] #include<cstdio> using namespace std; ; char s[N][N ...

  2. iOS tableview上放textfield

    用UITableViewController就可以了,处理键盘弹出和消失的代码已经封装在UITableViewController里了.

  3. 混合开发中ios兼容问题

    1. z-index无效,设置层级,发现再ios中无效,后来发现是设置了 -webkit-overflow-scrolling:touch 设置这个属性之后.层级设置失效 2.@keyup事件的问题, ...

  4. 在github上参与开源项目日常流程

    转载自:http://blog.csdn.net/five3/article/details/9307041 1. 注册帐号 打开https://github.com/,填写注册信息并提交. 2. 登 ...

  5. ArcGIS API for JavaScript开发笔记(一)——ArcGIS for Javascript API 3.14本地部署

    堪称史上最详细的< ArcGIS forJavascript API 3.14本地部署>文档,有图有真相~~~ ---------环境:Windows server 2012R2,IIS ...

  6. python获取当天日期进行格式转换

    # Python Library import time def getToday(format=3): """返回今天的日期字串""" # ...

  7. 关于uuid与自增列的选择

    关于uuid与自增列的选择 在db交流群里看到有人提问,说他的userName 登录名是唯一的,可以用其做主键嘛,如果用自增列,那又要多一列. 后面又说,如果要用主键ID,用uuid会不会好一些呢?作 ...

  8. mysql 数据操作 单表查询 where 约束 目录

    mysql 数据操作 单表查询 where约束 between and or mysql 数据操作 单表查询 where约束 is null in mysql 数据操作 单表查询 where约束 li ...

  9. 数据库触发器,禁止DDL操作

    CREATE TRIGGER [Object_Change_Trigger_DDL] ON DATABASE FOR ALTER_TABLE,DROP_TABLE,CREATE_TABLE,CREAT ...

  10. 基于 Spark 的文本情感分析

    转载自:https://www.ibm.com/developerworks/cn/cognitive/library/cc-1606-spark-seniment-analysis/index.ht ...