概率图模型PFM——无向图
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAdYAAAFPCAIAAAB/EXiGAAAgAElEQVR4nO2df4wl1XXn6/+0VuG/IIKS1cjO5I8YGbYsERwFFvlHQHGBLIRM7AlGZYGVIALRY+QQ41FMrdbprHdxBbHRati8UbKQ3dTa8cRJV5LpELrWNMrMvvF42VYlw+zYtT1KE6rXM2Nug9/Qd/+4/e47r96vW1X31j313vmo/kDucb/qelXfOvfc7znH4QRBEIQlHNsnQBAEsbyQBBMEQViDJJggCMIaJMEEQRDWIAkmCIKwBkkwQRCENUiCCYIgrEESTBAEYQ18EpznvNfjUcTDkHc6I0e3y6OIpylnzPZZEgRBaACNBGcZ73a553HHUTp8n8cxz3Pb500QBFEdBBKcJNz3Z0ltpzNLmoOAp6ntv4EgCKIKViW41ytqq+vyMORJMllVGeNpyuOYB0FRiDsdnmWN/wEEQRC1sCTBjBVlNAh4r1fuN4yHz1Fk7IwJgiD0Y0OC05S77oj41knppumIEPs+bdYRBNEWGpfgJBnKpedpS+PG8VDWXZeSEgRBtIJmJRjqbxBoDlezbBgOkwoTBNEGGpRgqL+GkraM8U6HVJggiLbQlASn6VB/k8TsZ4XhMNFBeWGCIBDTiAQzNkzUNmNakLFwp9PExxEEQVSiEQmW/rMgaOLjOOeMDR3HcdzQhxIEQZTEvAT3enbSAlk2TApTHTNBECgxL8EyGm2+jDiKDj46DJv+aIIgCAUMS7B0QTSWgoDAdAQFwgRB4MOwBFtXQPkOoECYIAh8mJRgmY21EgJLhBnDdW2eA0EQxCRMSrD055bqv6OdbhfFaRAEQYxhUoJFFsJ6+CmDccpFEASBDGMSnOeIhE+8DDzP9nkQBEGMYEyC5T6Y6XJkFWRKhHwRBEFgwpgES08uhl45cWzNm0wQBDEdYxIsuzRgQDYJomJlgiAwYViCre/FCaQE02QjgiAwYViC8TQqIwkmCAIfJMEEQRDWWA4JZowkmCAIhCzZdhxJMEEQmDAmkbJNOwakBGMwKRMEQQww7wvGYMVFdTIEQRADjEmwHJaBwYorQ3Ka5kkQBCbM94iw26lSIPpV+r7t8yAIghjBZK7W91FUZ8h4vNu1fCYEQRCjmJRg2ajX7iYYkrbFBEEQY5iUYJmLsOgOZoz/7M9yx+F33mntHAiCIKZg2DQm3cG2rAgyEhdvAgqECYLAhGEJloZcK4EwYwcbcfDwPHIHEwSBBPOlEzIQbt6dJr1oYTg8DSnEcUweNYIg7GJegmUg7LqNDq2QRgjPO5DaNB2KsjylKCIhJgjCFo0UEMuErO83pHdZNkxBFPK/eT70SEgh7nZpphFBEM3TiAQzduARbmaap8rH5TnvdouZ4jAkISYIokmaaqMDw1KjKgz1d245HGM8iopCHATUSoIgiGZosJMZVOEgMJKRyLIR/VX8CMZ4HB8MuocONhJigiAM02wzSajCvq95uHKvN/LLK0h8khSF2PfJwUYQhDka7+cLVVgYEurD2IjVoeamX683wcFGQkwQhAFstFTP82G6oKbAjSdzw1BPiiNNi0JMDjaCIHRjb6qFbKMuhTiKShgSsoyH4Yj4uq7++mPxKSTEBEGYwepgoXGLrtDibpcnCU/TEUXOMp6mPI6LytuALE48T3KwlSfdTcURnY+S7UT8d75Hl5FYXhDMdpsocIpHkzHpRAdbGGreVFxcOpsd56Qz8XDX3M5mJ90lCwqxdCCQYAFjPEl4EExorDN+eB4PQzttzyYKMTnY5hGdj6bprzy8dY/1KcNDLBdoJBiS5zxNeRQND6F0993H0xRLHnbcwUbNMDlPd9PwXOicdMJzIYxqk+1krgQ7J534IoJJgwTRICgleBwhdhZbv08jSUbcHUvsYMuuZIVUg7/hj/+D7lY3Oh/JIzgT+Bu++PfdrS6MgvO9PNlO4osxhcbEAtMSCRb+MM+zfR5TGHewLVMzTNZnIvItHMm26quI9VlhUy7dTWGCIrtCCXdiMWmVBDu4z3Ypm2FmVzJ3zR3X385mp2b0WviF0XkdVTwEgQzcoiaRlgn8LFkzzPF9Nl3ehuBMUPjN4bmQkhLEgtEGUeOgjqMtEeXSNMOE+V9/w9drLBvXd3/DJxUmFom2SXC7vF9L0Ayzt9PrbnU7mx1DZoZ0Ny0kOigjQSwSLZHgOG6lBAuoGWY9WJ9J1wRJ8ERYnwl7yXj9i7/hdzY70fmot9OjBQRCWiLBcgBdq4237W+GGZ4LvXWvs9lRdztogfWZTA2Td3ic8bz5tCM4EzT83RGzaZsEa2luaZd2NsNkfQYjLApF8QANfIpHb6fNocxi0RIJzrLFkWBBq5phFlIBJMEWSbaTZDsp1LCM5x86m52JZkH5U4t/AgFpiQRzvmgSLGhDM8xx/cVgS+jt9KLzUXwxXp5Ga+lu6q178lsomE96O73eTm/i1Uh30/hiDGU6PGd+ii6hRtskGGGNcn1wN8MsVL5h0F8O/GrL0NyH9Vl3q1uIZCv81azPku1kXKZF11BNJ0uUgyQYDSibYcYXY4T6y0f9yMGZwPbpGCS7khVWIc5Y/406UOWLXdojwSJzusASLEDWDBMWR+DRXz5WtbGo+0u9nd54SrfQz6gmOF+xy0PbJLgVNcpawNEMU0bBCB9OGAgvajqi4DbzN3ztHYvG+9st5JVES3sUbdkkWGC7GSbrM7QPZL6XwwhxIU0aUB+7W10TH4Fzu3V5aI+iyRrlJWS5m2HOoJCOWDx3RLKdhOfCzmbHaKYFVr6QCjdMexRNSvDSzmprsBlmupu2pUUv9GlR3VcdCtYX8kg0QwsleMlbKxhuhinjyra492Ft2AIEbsIfZuv9B1XYygksIe250L0eSfAQM80wsysZ3ODSdbKmyffy+GK8ALlgqYAW339yoJStE1g22iPBsk1ETF1aBmhthsn6DC7qNUswYzxNeZoiqTdBCLRgu2uu7dMhGqKFErxgNcr10dQMs1B/VTcV2OvxKOKdTvENAc8wDHmSkCjzsQnTGisvCOS0R4IZIwmeQ41mmIVuW9UX9WnKw3Cq7E47xHnq2Fdsyy4ipDB/z11zkfwVwikRnY+QnM9C0h4J5oMa5ZA6jMykfDPMQgqiYgg2/gJwHO4427d1LtwZbN4fyePsvd3t2zrv3jAm07UNHr2dnjj/FhXLFS4+Hv3loy9mPGe1YLRQghe+RlkLZZphFkLg0g9blhU+6+ph7+y93RcfTY8d4zOO547maw8lF+4cc9pVTfdLc6u75rbFHVGwgqHy1RXK022fzmLSKgkWQRZJsDpqzTBZn1VPQUiz4CDmnau8E7V48/5oJC7udCrkiNvoEYYpeEP1b5UpvJtpXokJWiXBItTyWmOWwoJCM8zgTBCeC8vJFmMw+K0mvvBYfYqdvbc78rYoWYYDTQVt8TUjN2LDN0SL1hYtooUSvJw1yvXR2wyTMdi84uXPxHXEFx4vPJG9dTNoi1GmIQYM59tSr8z6LN1N0Uob6zO4VYgtTl8AWiVnMpQjKqOlGSbQ36uHvReeyHTprwyHt+4Kq6kw7HWwAMUaGCj0jG7Fi61FtErOZNpx6dvTaCBJuOex9zvZx0o2wwT6+9bN/upTTK/+ymNEhZXfEMIU0boCP+TAJDtlhPXSTgmmGuXayJmP3n/7qVIONtkqyKj+FlXYddV35+DCGaeVKr4YB2cCbSVwec7TlEfRhENTOSJ8sVEUrJdWSXAckwTrAnqh8tdfU22GOfgK3r3BNa2/RRX2VU1R8k/DGQXDQrhaJYi9Hg/DiV7sCYbrIKhZ/JLupt2tLs391E6rJFjWKDc+PGLBgO14hqHi3GaYeS5/pD3/O+MY7s6pFUayPovOR+6ai9CXVtjdqrKon9ihSfFwXTxjYQlBOyWYapTrAWcxFL1QM5phDiLlzfujxvT32DH+3NH8wDJcJh2Bk1oeL8Z4t1tUVc/jYcjjuJhzENmJJOHd7oRImYQYDa2S4CwjCa5PwW8/eS08PdS6ethrUn/FsXl/NNSO1pLv5dUrHXq9ka9DvBfVDYV5zqNoRIvFEoewTaskmHOS4PrMCoELTHKw1ay/qHxcPTyQj9aGb9AwV6Lel7GRdUnNThqFVh6dTtlfJYY6d7e6tC+nhXZKMNUoV0UpBC7AGP/TPxVX/oqNEFgcaw8lB99+V7U6IN1N8Tioqlx5XiyB4d2uHkcmLCsvWYUoXyTUNUILJMHLBXQXlaiIHaQg1x5KbEnw6lNsmBFWQ7hZ/Q0fQ7xWpXg6y4ZLENfVbATKsqG4l1Fh/J6/dtE2CRY7QiTBNRCPkLvmlnBEeZ4wotnSX3EMDWoKYgQlD0MsDBPBSsrF2FB/fd9IORLs8qGswtDOSB61+rRTgp22nTYmku2kXDvdwS7o1l2hXQl+8dFUPRcB430kk9C6W91kO1FyQcD8gyH9lYTl6l+go5EGLNWnbVpGEtw8g3KMbzzSsyvBx46VyETBlj3tUwpp0Datv+Mfp0Abm4KipW1aJrcRiMYYREnPHc2tS/D2bSXewVApMKSDVZHDwl23oXYoMOhWsBvBJA+SFUZ7aZuWSQmu1mJxucn38ipNETsdDIlgcQwNwgo3AMxa2g3WSmxbwRRwk4X4cOtv3rUtGJzRdtpsBa2VYGoTUYZ0NxV24Cr9Xl2XO872bR3r+nvsGH/5MyX6hMBgzVaj2+h8JIJxVRWW9W/K3jttyB4sCnkef8PH3IijRbRNgns97jjZx5zk71+MzkedzU7hqDt6fUGR5RhVsqKOg0eChztyChIMrbhWZlLAaFHpHSC7cDSWgigg0xHzLm++l4tFBuWCa9I2CU7T3hEHLoIKh7vmtinr1wiFpjyll404JVhtxKc0sVpp3w4zIUo5UxkC26r/lG1YAqUMLz1r9WmZBLOt73gvzpLgca+iGAxj64QxUNfIiVOCX3iBp+ncUFG0RbZSx1WYoqR0E7quzRBYIAPh1haCtwvUEsz6rPCazXf/72wJDs+FMMqTxZTeulfODLtAwHKmKm8jTBL85597DTasGB6exzsd3unwMDzoVi6ah6UpzzIrwVrpCfDSCNF8FhiSJKXWGURN8Epwsp0I7fA3/BH1dJzot5zwpfuS7STdTeXTle/l4zsectNAJgSXbekEG4RX3DnBtB2XPPDNyRKseAiZ7nSGcyV6vQOl1h14ljbPyhIJu24fxkp5hLMr2ZKvMmuCUYLlTJ3Jd3CZNhGFyYMiWbxU4TDszlWxThenKe2P//hAQ8PwQFVV5keoHDMDasVrBmvzVLdAxfl7CAwGsgBK4bUkHtXgTLAg1rQ05b3ehPlPxixY6CRYtMIr6OZI6CruVDUJlgMUCr9weWZxT72M6gyis2YmFc0+lEozGDt4ZgbPUu/rv5c//eiBsGqR6XkBNcxClPNCYGiIrGz9hGssDI04KtLr8W53pCPdjC89ivQuU3BJMJwpICOI4lcrnqIywUK+l8NgUByaTx0rci+uehUTpgLlg2ZpynPkOOfZlcxdcyesfrLsQDHjWHtAnX0MvPmefnR+QJ2Wc3qYRXk8TcXGe0gQ7bCrfdfThiuWB5ESFRqqTl3dVG0TIZPLzjL12Ut3U2/dq2Xe/O53xQX/h4991a7+vvDEYGxKmQ0r+PYt/bePBdQ8iobx78ynNPiaE/2Wk9+qFlDfc49i4NkEMh087zoXXB/NnJ0GhPgWvgUx5BSuZuSRJAff+/j/pbZ9ENFVg2u3WbMX5a5FebIrWXAmEEUcSyLB1clzHsdwdfbev/hJuxJ89t6BbbbM/Fa4r2DqS9cYUCOxgsl3wzzgjnc79uXGR0CFYYk3nxhcXYiIa7w4MUqwv+HPelTk68uid3KBGVNeeNjNRZRt2S6AUbBNjVAMqJGgLMEweYg9HczYyIzwOiOgxCw++HRUtRKi+coBc7ZWqU2ECWYobxDwr39d/LdFa1qFwUUCuLrCW02LrQWg8mwEhH2ZJwOnhDiaRkDl+Yimlx/Ex3FK8BziEo1a5iKez85mB/sLvDyiin9O3DdbeZNkeEsNIrXWje+EEtxAmXJ2JQvPhaWrELFJsFiqL0xfZqMjoJKkznwTa18567OKaVm5XVsmITgNuEpdJL+wdAtN3qdWV17J4LK/dbPfvP4OG6SV92zBbV7TEgxDwnIWQGzpNeVEBAdFKEhNEVB/DbXAz7Jh0r/kR1iT4OoZOmXHjApwr2aRWvzATZLhG66C8kIGgfDLn4mb1N/njuYHWeBKu1VN9kuD7TjKyT229Jo4mV/7NcVGHMGZAOnjw1hlcSz9QXDWlDJ2JLjg/y0nwYNRZlokuNBFDOlrvCSFjtp1lVcyuPLv3uC+8ETWmAQPyzEqfePwKzadrKzuepQNIhIE2erXxhpxuC7vdHi3y5Nk2ksCo/5y4GFtYAQUlHvlHQsLEgwraoT/oVr7RF0N/QpFzAuQFIZXOHjhX9VVXsggWLt62GumWG44NbnGIyQuSJU7rQwwC1G6HUdWxfJsCrndMuMQZdzCRYt2hI1cW3heQxkemPRQy5Q2LcGiVKmW/vJyiSoVYFYE6XpKnTwPvvXg0APwiA7lhQzCirdu9k2r8NAFoTxifRrZlcy0ExxmISpPJym1hjWF3OU/d27ocZ4ryr5/UNqQpijczbLm22m285Fc0KjpfqMSzPoMto9y19yKT4VuCWZ9Bl8MVtp71wVkG2BQn9+qSXklIOdlVIWH+otkeT6PurWXUvis69e0l0GWHZiag2A8r8Xe7/SOjIqyaHUkarKb32aU17P5/vdlPrpRCS6UIFd3ICibFtWBq0i87tFxxvK86SdBkucvftnU/u9gtfXWzb6JvPAw/9AS/YX3dsWmoLJRr62RGYXTUEmJgOLd8Pc/4Jx0ur/jsPdPCZMVEsrakJv2VjrPyRmsCt33G5VguE1UK9Ks2iZiNvHFWBgkWlC7PH2HLf5PwyyEwYZwwIXz7g3u2kOJLvF97mj+1s2+Cf1tLBFc8bLLzgx2+1XKh6vM4h3++dFfPM27Xd7pjNQBN5xQljXEtt7fMg0974XadC64s9kJz4V1V/pmJLgFKHgbZFLFW/fMJrWhC8dxtm/rPHc0ryO+q0+xYTtgEUHosH4LwnPhnML32oj3d62xANaFQwaPJZeYUIJHylLynKdp0wllmQW2+DKTgfC8c2inimErJTJNSVdZb6cXnY8aaqEtJ046DnecrbvCCnkJIb5D8694FPWFRdL0YnSvNbuS1U1hWdcOqZIl3wHQ+TfH2TkzoTzhqJBQlo4Ou50/5Qt1ZiTRThWTEozWDaMFXX5e06RpoR/YWzf7L38mnqvFq0+xbzzSG0n7OnoaABaABTjYu3nJ57b5jLDcyq/kyhixopcCdoOc21hOJaFcZuqHQaTRcGZJZxMSLGYY61wDyttUdMIW/T21yrFYt8YXYwvjWNqivAWSZPz5efcG98ph73/f/dzm/RE8LtwZjCR85RGGJvwAbZJgW1YquXB2KlbowYLMWk+NaCkXxxUTyjKlrnW7viIKuQjjEiwL4epuDYk2nXNXLr7Pu936OURpMGrOoNZS5S2QJCO9oxQPz6veNlABWI1pSIJ1vqrlIq+Bgi6JjByDigWEBt9zZRPKtpYR48hnYfr3aFaCNZTnZxkPw/lvwokLlm63WkgFT9tdc80GwlqVV0w+tV/gxxhPEh6G/Gd+ZpbsBgGP4wZiPdgszYQExxdjd83V+baW90NVQSyHXFbWqCJrtCmoSkL5tdfMnoMKCm0dzUowfDH6GyUTTFk2eVKI2DA9dYq/9tpwsoiYVjBx2VJpbQtLSIwEwgZi3nQ3FcE7ogI/8Rc9/vjIGJjGSw+MSrD85TovO0wLmB7oKfW3XgkiLPS34KyXCeW77pobeDZ6VuJkpm8MGpTgQi+IErc+Y4V9du55vNtVvT/StBg4l9/hgSdf0Wk/EZPZhoYb485HpjVtLwmNSrCpBTjsNhCGpgQl1FYCw/pMlGhbbtyOyrGq0FPM4InCQLJEB2vYeVOIb7U7Q6yF4a/y/VLxF6w31WA2Mp/nRbfphGYqsFEJhnGG5pxVodGt3tUDYyOrTE1O5N5Oz8IONkT8USWnWxnElgQXZnGqfisJaAvgunpuiyiq1jAf/gkVE9nN7rBVdwUZQut8kzrI5lDam6XBbYPSqTYVCuMedL3M4AhLXQ8aEgx0L6iFLQmu0vUG6m+lKUxTKYyNUrvhCl13S5jqbHgboDfeiBZUQGaTrPed4Ty7knU2O9oDNPieNlUOnucj95Lv13qlpelI8Ot5i2auF3+d3SJviC0JliZB1RAY6q+J1CFjFdJesv2gUjrYqqsMJq9LDy4zBKqsnBlg8sfs4KvCvF7fL31HJUlxfzsITNyTKBIRSO46aVK2lYjwN3yl1FvSVFtCqMIKL3/WZ9H5yFv3ZuWCcfh5ofUVS6c3kYjHsyQ0AFztGZeeiR4hYeybVrwrzEJBUHQKeZ6h7FB0PqrehFYL8hnHgMKUNVMnyvpM1aADs10N5KSgBaeOOOJQXgkMx7B0epNXY3GREtxc8qeQSSgcN900p8y30zH3lMlmPTZVGNUUPhlcTi8Ws/2ugN22GhvZIktWKgRoyJRXIveFsIy/0zrirz7ZlcxErlaYYd01t+nx2zPuw4lHKVtnVWBm3No8clRT+OR2yPQrb1uC5SuryeUqnLKn+D1hVV5IdD5CYQcWYHoSpCPCRN1gsp3YzH6KjgqyJOFDH+KdzsEhO6g0tR2Kwpku3eimS1pUEIox0yGnWYLzvTw6H6ne6PJiuW7Tm+YyRzM7HTFQXvZ+J/iak9+KUXmRgmk9CLM0ts/FGM2HMmPAPWGb0YAIsKxbg6W+zczF6bwj5RegWk4m07JWrPszugKOxbzRbw1urOMPkPIqgWlXhCS4GaBL2qYEy+W/vpb/VZC++JkLQZ13JCyHm5+Mt96dGs53kqc0Jdvg/tlPLv4zrBdMRUrQt6D3N1s2YEEQZN41tOXSgtyHsLsVLLOdMyM2bXdk6e5i8k1lMVcoz+GrX52d54W9UK3tM8wkvhjbb5AGEa83HI40Q3WDokEarlpwkmCBlD9bZUHSCzEvJa3tjgzOBOVKA2S+xuKiHrbHnrnDBrtAYSl8AMiLj0IOOHCkY9gSARKsseOSNGJ76579WBiHBHNwqS1LsLICmkK+A+btheiR4EIt73xHsNpIjyb4xV9U2WGD5b86G6fpAF58LI40NIogMHF9cBmx5QW3vfkpC0rt1wcpi6B+ZBZYYRWoR4JLd7SR2+V28+UcXKxTp2b/w3KZ7gaBqz/LfQIlMgaxrQjc2OrYUHKjIpj8J+G50L7+cmCLrNGHvgp5Pqw1UzBi67l7oDwpXX08ddwyHp9XGCJf74bspZVBYcYsgGm+ar6Xy+04Xa8ouPJA0RQJkwQjQurMl7/c3IfKXSW1JaBmCVZdpGPaq1FcMsjiS2zp4EYHxigi6w9xIL678FyoK2mL7maQEkxATp3iP/ZjjTpfpRdTeQq1zkTEnHY2Ix+LIxEsULNPsT6Tbxosu16cc4Sd2vkgEMDTMJBzvbkjdCsPPMtKPBQm7zRgvqo0AkrPd8b6rET8hWyvRj1kE43TTLWFrQqUYPtb8wIEZQJGgVkpFK89TBKc7qaWV2OFgSBPPTX8b3OxMOzCWCYdZOM7wybBLV/E4doX4ohGxpkDlx2CIxoVIdtxWMvPwMlnciAIbIerfRBfvRFQViUYydZByyVYmoLROdJsj4yTlGidqoZ0WWCxoKBZdliuBU+SoRuhMBAEqnDNySOQwgio8hYvDZep9EJMPqIIemhx3noJZn3mb/ga95rqgmZknCC7kvkbvvYCivhijGXzk5MEc85Hk78TJ59BuRThcJ3auTzXMgKq1mVKd1Nxxcvdiy1PRKS7KSK945xzrjfEqwumkXEcNIjAskowAZoHyo4EF1IBMwymBd0UQlxWOnu94QaSM6jqqprcqHWZSnvRBMiaeZfdyhB/NZbmAAjBtDXE+gxd6aB2MMU0FiR4YvJ3NklSHCwiWtrP6K2c5zxJeBhqHwFV/TLBml13rWRDLPnqwEAZBxXsiIrNGoEFTCPjEDWOMccyS/CM5O9sGONxPHXCk+8PO99PG00iJqjWpvplgvMiS+9+ovKNlnkfwBcPkkea9Rmu5m2Y3q+Gmoj3dnpYNuI4rv3tRiV4bvJXhV5vQmw74/C8KrmL6VS/TLAoubQESA+d9XShLCRXjiBQmcDEXhyiujhkWSZYQ6GrrFz+TizLIEzVyQ1JsHryV50s43HMu92D4Fcu5sTR7fIkMVFwX/EywRr50lkIDgwi1k0R8kWqfPui8oTCk0GxKYdpZBwf7aGqK3dvrgF8RTBJsLzgVWRBkQrJX8RUvIfq9s+V7n3rGcMPfIA7Dv/xH1efLwsro6zHnuhK4zDJATfziqoVfJgAk6tSLMsMDrGvnPzFSsWvDd7ZFRORch1hMRchQzaYYo/j2Ukl+Pqx3h8A3VQ0TCPjuIGIFWN3ZkwWFG6gEGaIluQvMip+bTDFVjH4st7WnoN796abilocBNMKXVBtsqNKTHOOa2QcBy3NdK1XUH37ByCTYCOYSP7ioOLXxvrMXXM7m51ayw27853kPrJIhiRJ0W4tpGRs91P87UgSEegkGFUbUs455/HFWOOiGMuQYAiaBhGmWKzkb4Hqz62GtYasZLViYJJ2P5i1nDZE2fN4HMtXBeuz4EyAwZYk5QBF43BkI+NMgK5NJUdUnSxgfaZzW2Lhkr8FbIdO8uXW8AQjuYMx7cbNMt7tTnALTp8vZwVci2JMNQKGwNggH5MEi+04f8PXo8KLmPwtYFuC5UPrus2lI0p96Hg9uExQINj0xyXBmEbGGUIml901F4ULkCNqEMFBuUDdZdniJn8LVJHgfC/XOTxNvuh8v4m3HByup95NkTGeJJMTFFFk0dQhqr+8dc+6Q5lzXCPjOOf5Xt7Z7GhPFwza1w4AACAASURBVMQXYywXnKNbeciYoNag8YVO/hYoLcHxxVhsRmkrimVsKG2mVRh+VrUEdJ7zblfcH/HjTn7raMG4jYVSb6eHwhHMcY2Mk73DTVTQYLngHK8EV1+WLXryt0Dpp0XPW64AY8OLbk6Fs0yj1if/4z87Jx33v/9Y78hoXByGTee18YCp9Qcq+7ZBMDWI0NCXbgmSvwXKSTB05Gjegs+yERXW/upLU70qLyMs71u/UOxA6gx63y36C7wIpn0hWMSIq42RXjCVI9YyTS9N8rdAOQmG28H6e5QUEkC6xt4wNrxN9UXZRUNunvMomtD7TqHcbkFANjIOtpHSPrUISyKYL4oEL1Pyt0A5CdZQlzybwpuw/oinQm9mfZP7pjZnyLLJve+ml9vVQWQ8UbijMI2MgytivZ0c5P4nlnQwpgYRFetWliz5W6DcNwdDP4O3IAxaxcK2rHgJAwMUX41hNed8VIInt+BSLrerTL6Xy3yI/bU2ppFx0jrmaJ2wCRtEYCjM4RxXdXIVCV6+5G+BEt8c7FZuvBYry4oJViFeMyaL8OnDRYJAu28Mdqyf1QVRNOefV25XDVz9CjCNjDNUw4brggswSTDnXHSv9jf8+bmaZU3+FijxzcEt5oaaVafphJ0uIce/+qv8gQeGDZUn/jMhvmaCstIPuYFyOzuKwBhPUx5FPIqG/a2jiN9zDx4tMNEmmI9ecFxRMI4tUM456zOl4bZLnPwtUDEKbjT5KMRr2pSniYcwJJgMx6p7nsSglIkJipJvi0YlOE1LfAtiE9JeOCzvVb2XBWOPHrmEbxHLnfwtUC5m6W51vXXPWtpRTBYJQ37ffRM0Vw4XaeTJh09jlVpBHeV2TUiw8JOUev8V8viWApzofKQ9UCAJ1sDSJ38LlJNgzT2QKoPDiCM2x6sMDYGAcrtiIDkvQWFcgqOokDl59wb3wp3By5+JX3w0fe5ofuwYl8cLT2R//rnXNu+Ptm+b5JJGsEdXH7jLh0uCcRgB50DJ30mgyNyVRkqw7Vdouptqeyel6WQ32/RyO4PjnNO08FbYuiv8xiM9qLkzjtWn2NpDSVGLg8D691UTdJ0qkVUnc86j89HkjSJK/k6hnRKMbDqOTkSCQrnczogEj5oCN++PVp9iiuJbOF58NB0RYtdtdTgMNwB0dqqqDDIJlrugxRQQJX+nU0LF8r3cvvlUgMyIYwTRPH5euZ3wAGnbIGUMbhVu39YpZBsqC/HVw+APMRwBpbupt+5pNEJARN1z3eyTLlrRIIKSvzNRVTHRIA1Lj1QhwQjawTSRHJ9Zbic8QHo8grCNnOO8/Jm4vvjC1MTWXcAHYiwPKP3a5iwiKGoRBTg2RQQTdiYo+auAkgTD9xsKO6SIDRHsAgdnAoPzuguYLrcbPC3v3uC+8ESmUX/l8fJn4uGZm6ljNtcaAiNYJbi71aXkryJKEoyuKAiHEUcGXHq7EMzBULndIP9gTn/FsfZQMjxn3Y8l3J9s9EuxBaYGESN7lX8TUPJXEaUvD91GsLQKWGV+mwijaCy3GwwcMq2/RRV2Xb0PJ9wuw5KuNQqmTRGoEsMm2pT8nYfSl4er9aoc02t7F9iyBA/IT78c/dFYUKxebgcmOb34aGpaf8Vx9l4wrUofcnPS3I2abCfNpZ7mgkmCRx6HT1LyVxWlLw9eXPs3HxojDnwz2ZJgMbDWOemE//OrbONUlXK7wWO8eX/UjP6K462bfb3fI9yxcMx08kM3uxNTgwj/1KeGF/9f30LJX0WUJBje2aZPaD5o+tLClZctCZ5wDqXK7Xo98dO3bvab1N9jx/hzR/NhwK5jrSqKFY1uGmP4xkfAsSnCOedJ0v23/1JcGf+PfoqSv+rMl1TYI9V4j0oVBqphfRcYwwM5K02vUm43UOrGUhDw2Lw/0hgIw0SwId8Yhm98BCQSPHD++n/oBCd+gV1BsD5oD0oSLPuCo3CkoTHiYHggYeg3ead0RrndV77CByUYzevvsWN89Sn27g2urkCY9Zm4UTubHUNmbfiNo3AHW8/IkfO3NkqJBfGcB2cCXD16bC92MDyQ0C84xwMwrdzOUghcDIR1pA6T7cTouxCXNcj6pgg5f3Wgmtu1b4SQoPFCZlcyUQjgb/i2Xk5VOvWIcrtbbhGX8Z0bf96W/h6DGWGt1ghDkAQPobYPmrAvZKXBZMRRnRFgEikK3nqZiu2BF1hvIXKF48Kdg5I/9AZSpBLcfEZuUtuH7EqGKFBrDyiErByYJBgDMlNfzq8yKIfT0oinzjGsWq63km3AJYZLgq1sikxJ/oq9UESO6fag9NDmezmKLLAAkxcSA9K1XS4K9n3uOFcPe3b199gx/sITWc3NnGQ78Tf8cn9+JeTWNAqtaV6CpyR/0fWQaRXzJbi303PXXETlnkiMOGhgfSZUuJwoOA53nAt3BtYl+NixWt9pwyMNsyuZ0njgBmh4U2R68hddD5lWMef7szaycwaYJBhDLlhQThSyzEpF3LTjoK17pe6jsEYRUaDQAE1m5Gb2/K0+ypaYK8HzbafNY90LOUAWB1t0RFRksJNjfS9uRIIrqQlMhaMol2iMZiRYwfmLq4dM25jz/cH9BxSTWgbhGwYJxrU5U4qBBFt0BMNj2LWnJDBEaCAXjIsGNkXUnL+wOxKKFE2rmHPTY+hEM4J1OzoAlQSzPithCUAmwcMCjZLAh7+xECHZTlAIjemMnLLzF1cPmbYx55Ih6cc4RErwlKHCTYJKgsX8DlUZQibB1aJguFHhmGmNNo6Iu9011/7WiFEJVh74RntxNZlz08Moo5kTmkM88JDabhDBMUmwbKKoumu6ELlgeP0b24ir6MI2gaHlYMm2D7CHjJ4ZhkvGnNsI3RIDTY8ejqNNjwBuSSs9BgMJxuWIcMuNGoIvnsauPxYJNpSRq9T2Qdx+3a1uyzalcaAqwVj2OqQEIyhmxSPBVRaDCH3Bjz5a9g/31r3OZqfJnABMzTX0kVnG45h3u7zTmdBlyfN4GPI41tCloUbbBxTJ8XaiZEpDkfkSDMpqbZ8H55gkmFdYr3gekuq447+5PRQU1+VBwOMYwypnIs3tjkxrvT/j8Dze7VbUYuXkL6GX+Y9rd6uL6BWHqUEEdERZv0SlpQFNj4iRmcqFo9PhUcR7PTyKEJwJjEtwmk7o7ywviDweeIA/8MCElvzin6m/w6jnr1VQaFkJOtXLqEwQngtRtAvgvLvVLbc3iLBT2le+MmH2nTx8n4chT5JZc/DMMzInWHsZQp4XxVeMYZ39V+c57/UmTEjpdOZHxLV7/rI+s74EbDVtk2Bxu+CoThagGOM4ujellA4eDKJufmocPFafYkOFlSfW6/EomhYJsvc7yRM/G/yXj2Rrf9x8vsKgDSaORzS006nSOm58QsqM/braPX/T3VS0zEbyFLSRtkmwUS9km6nSrSo4CD9feCKzJcHDooxpw1jTlMcxDwIpFt6LA+/H71jIV5T2/6nAmPwuDtSw5qslTUfWExNzuzqSv+QIrs8cCU53U3OTuKog7phwmbqxKBNfjIVlSjUkGeQitu4KbYXAB7PjFC0ueZ6sPy8fe/8P7eQrhAdLmxOZsRG51Ggyk/YhcVnkBdGU/IU+HBSDfdvJLAmW201Y2tAM1s4YqpMFrM8wJIIlrM/KJSgHeUArgfAwBFZ+p4pl70Ee4O/+3Yx8xUFy04y/It1N9TwRUH9dV//4n0KqN8s0DnyDORkqyqjMLAnGW52MQ4KzK5m75nrrHor3UzUGgXDzQ5SfO5oPQ2C1iBVaUNw1d+Syj+UrJvsEUPkroP76vqmzgp/yy78sZwbWH/gG9YEapFVGVYJRxHpSgqflDZtFFkq1OxE2eD4btkYMi5LVXqisz0ZC4BlbYXnOk4SHIXZ/hYzfzemvoJDrqJH8hUAreoujENuoSnBjJzSLXu/gBsLh20e7F1GtfXuT6YhhCsLzFLUALnuLIfAM5vkrKucr6noAotJXoBaM8XvvPfjEz32u/u+D25KUCK5DqyQYU4OIKtPjG4H1mUiPlNivH1zYd29wG1DhkVoM5bUw7BhV3Q2mKV8hduSqt8cEr73mxr9/97v8535O1xNU2odOTGGWtpaueTWNlODG7trpoO3RB6PFEpHawBT11s3+6lOsIf0tsxckW1drS75XzVfAt29FFZYhecMpNdlo0K8bt8LOUCg2ilpLOyUYAVCCUW0Hwy77JU4MpAvNxcIj+lvSWZhsJ966Z6pcvky+Ij07VJ8q1rTBFqgde7v8A2t4IQTeuoeoe0xraZUEY2oQgXZkIUzSletvN6rC33ikp1d/h33Zy+tv08zMV2QfGz4Xnb/61dKZXOkJs5JPy/NhDrrmb9rLaReuPrPkTGbfsER5mCQYT7/2capPtBzdOr9wZ6AlKfHCE9lbN4PFfrsawUzKV4xEJ6X8FdLVY7HCU7YbRDB6hpglZ2JCMKLB4A3MK1QGVafKAnCrpMrXB0pX373B3bw/qizEzx3Nt+4Kh+JbqRYAUbQ1yFf4f/KBYcL91jL+Cil/FreU5WZgoFbITphkTkSJ5dYXWA8fAHKCfXguxHWVOM/3chimVbFP9XpwDf7uDe7Ze7ul2lp+45HeiPiKL66kCbe71RVeYGzO/5GWlV97vIS/QvxL663+ZERf1Q9HKWBdoFjUq4JJgjnn2ZUMWwpCAg2FFXftGRtpMuA43HGuHvbO3tv9xiO9ift1Lz6arj2UbN0VDsveagS/aLPtfGIaSsVfIZ251lMx0hpR/nvp7fRwvhdbSgsl2Prt2wZgLW+tIgIxu2FGlDf78DyeJBVCLTgU0lHv/dYUc/wwc/0V1o3tMhdR/mmS3wuWYWYtZ44E93Z6WFbZ8qbB0SACP72dXnAm0OZZTpI5FQ0F5Q3DOkIDo3h3zcXWjpb1mchFKNXpSX/FT/wEnv3kg6+y5JqSiuK0M79TGpY2ach69CwvWcaThEcRD4KROTpheJD0rN11AS7zMS94ezu9cudWSfVMUclfVNF1Tkxn6hcAS4BQLAOlBONw0mRXMn/DR6sO7QWu8bHce7pA5UOQvpcywOwQtqVJS5n6BaArwJUbCNbzaJz3dnriXkS4Rm470GzQ7kagBWRNBJJlXPmOK3CDgbIQumiPBGPq0QNXytV7tTSF6GscnAlaEbNjNlzXAlsmrfwDBd+O+G/7ttBCCbY6QFcAM2L4ZQK6u1D0fZ5JfDHubHY6m51WvDDCc2Fns6N0VdsvwXXN5sQk2iPBsqwIAeia2c8EBi8ovspFAT4j828DbJae8hIsIw+6izSitB2H4opjahABNyVsn8t8ChtctITURel8FCpje/llpRhZH1+MFydBjwClTmmIJNh6ZefouPi2uNNh5gTbFqIoMozOR/hTOgWgSVbJuYGqvHPQIdr2eSw77ZFg0eIPwe2LLkWjgBilgXA7W2wV4qxCngt8GSuth0TtMoIwgnNkJ7PEzC/NcNdcFOlONBEEtOa0SDVgyIYkHQH1t0XvMwgcpzQ/ipf7Gda3lBnDZVJeYuYXKKPQX47I1i5H+bprbit27SUwHWH95ZHuplB/nZNOG5tvwb6g86vF5LyM2hMr6iLPRGFyEuuzZDvxN3xU+auFoSWZIPnSxrGbnO6m/oaP5eWkjGywad1LB1cS7dVfPpqVmp/ekdUZ1iMJGY8rjGEUAQeG1/ZC0hIJxuapbDnZlczipjY027RafwUylnfX3Pn/WraytJiLkAGNQiKY+vKYpm0S3PDEWcIAhRC4jP6+8+bZbx1/5tc/ccuNh27/5JFP3+26n/rt49++1N/n/O03XnrsgRP/uG/wxCcTX4yFCiv9IbLO3mIwIe1oCk8TtMBTXx4TzJHg8FyIolOalGAE1cmLRLqbCkNYk0ltaactM3/32tU34v/w4M9f5z70uy9uXLh67eB/3v9BGv2299k/+Os/O3bHykdWT182dtazYH2mukhn7KBfmutWnlhRC3kCzvyRGYX1CuWCTTBLgmVhq/0FCKYGEflejnBYUTWsNLvI9/J0N013U9VHev/yGye/dMfKjXccjVIpvkPeTo8/sOI4zvVfOHX5Pd0nawB5M1sJhOWnKwyxhvu3iGZILhazJBiuQSy/ANFIcLKdiFXnYizKCp15gzOB9leLqLyo3vt//wf/6/jn3ufceMfTf3WpPznNsH8penDFWXkwutR8GqICMA5V2A3TidwPdN25yejCBMLWFc60BVUJtvwFSAm2DfSBLsC6rGAW1uu0E8uFerbf/pt/F9yx4qx84rmzE+Jf+a9Orx660bORCIawPlN9zciMsO83mo6Qm4EKATj027XRst0WZokaon5gaBpElKuGagOF+ogS5bbTKYhv5c2c/Z2/fPzwiuPc8fQrb86S1/7p1UPe86+/XeOUNRCeC901NzofKQmxvKUVEgJ6kEY0XymvCHdNKQQ2xywdQdS5FYcEt7E0WQXWZ3DFUyfGn/irqt5CPzi9+nHHcVbuOfHG7Bzve//n5JdPnH3bZhAMl+1KL5s8H6YjGmjcI2sxXFcx+yHKr711j+zARlGVYMtfg5Bg29XJsPHuYuSCIdJcNdErJvbQ5sZ3heSyfF1VeYVfPvXk9Y7jHPrUSxfw53jh61m1eZP0+ZjempP6W3Lu1wKk2vCj5IiwL8E45h7CxXWrqwmmIRIIwZkg2U6g2k4U1omJ40JOw1v3ql6o9y6f+sL1juM4v3Liwjv1/qyGgH+7aj4diqOhjITMP2AojCbGmCXB8MXekAQzxpOEd7u80zlojQaPD32Idzo8imz5IuBeXOuqkyszXsxWOKCbrbfTE4mI4ExQL3n19uvPe47jOIdWT/fr/xFNAPevSiTToQr7vs6quTwfZvBIf7EyS4LzvVyWh5tVHMZ4HA+3axWPIGj4roLRX5Ofax0oLuOBsJl74+rp1dsdx3GORJdm/8P9N7+T/MNVBKmKgourxCq+1xvmhV1XT1Iijkd+p/KT0tvpdbe65AJujDkbXKKxi8FFd56PLJTg0ekcHN0uf+QRftddkzXa83gUNePskRtNCzVZXQFR/SVGuhXyDMbK6n549tmPq0jwe2+cuO/oKTtVcWPAGVHlVCzLRm5vz6seXiTJyArS99Xdx9AFQYngZrDnMWBs6PaFgW0cz7lj0pRHUVGOy7znK5Pv5cJ1ZPqDiGEu2DsxazNuP381eGT19A+aO6+ZwNxdlaVS4YlwXd7tqgpolvFudxj5yl0+5ehEdmFd4N0OhFiS4DQdeVGLxVfZSDbLihF0p2On7p4wweW/++LhFee6x07uTEsGX9v99lcf+r3NywiyEBKpYhXX8hPXha57sAsSxzxNh0eS8CjinU5RecXmXsm0Mkw3uWvuYpTg48eGBMvSoMriCyncsq5rvYiZ0ET/zVNPu86NH1mdKLLvXPr2Hxz9N389rWrZFvle3t3q1k3R5PmEkFblcN0K4svHNl1pqdcY8yWY9ZlODyyUyyDQtv9bCKtp83cx2P/B6y91bl85/Imn/+vZN6U17drVC397/MkjD67+LTb91U+vx7vd+TvVvs+73VKe3wLQ7dOWobSLwXwJFjswesaWQP3V3vmXMaMWSBHd6P2dhALXrl742+4zD99x6LpBj+B7Hn2mu34BVfqhEbLsIP8QRQfWzDTV0uin4PumcuQmmSPBOqszpD66bp3X9Ry6XRMqLK9Du4bFEYQKsOaI4oyGmSPBcIe3llWwfIl6dWSuWdNnwVnltEYj1BETD7pbXeRbWzLC8NY95Ke6eMyRYJikr96YJsuaztLKiNvz6nskYEfHRerOQ5hGuiOQ3zb5Xi56OpMXuHnm54I1lISV6VKqDVmaWbsNFTTr0E4xoUihWI5SWMRE5kswdGtX+QTpNm+4yY6+2QTwCixPawiiPrBYjpy2xERUHREVt0qhDjY/tVsmoGuoP4xllq01BFETUU5ZpXePYUTFeXAmQJ4hWQbmSzBchpeuWbQ7qZCDHEjVeg3oCaHeJURZ4P2DJx0B4yrb57LszP8C4D1UOgq2O6+bg67YVZuxwpuVquaJCsBbCMNCqjBTitIjdlF6B4p5CqV3onq9mvKnB1k1V+k1IHtHUS6PqEYhHWH3ZAr6S4kI66jeEFXcKtIZ1vCk7gLSJlzVD+ete+G5kPw6RGXki9zfUBqdaYiC/vob/ryo4r3Lr/7+Z488cPct1zuO4zjX33L3A0cGfPruW1ZW3Pue/I/xG8tXqagPk+9kkYXwbNcy5PmwJQVB2CPfyy06agp998us6vbfeTX4acdxPno8HZmjut/fPvkbh1ec9z18Ir1q4pyXAWMSLMsxGpgOOxexKefaT8MRhC0KKekyL4N3Lpz4FcdZuWn178em+B3Ml7rukZM7FAlXooQEl9uLk8t/c+0g1JGNI5o3xhHEGKzP0t1UHI19qJTg8rOm/mntsZsc56bH1v5p7Ef9S9HD7Rrxhw1VCRaVyt66p3rTSDsaBtWTBuGS1rRkOyEjGqEd2HWksRss2U6i81F0PiqdDPnhK1+8cdoo6/yVL97qOM51j60heM5biaoEy3aiqq4aWR+MAWlNU7YnwyEu1LuP0A5MywZnAsxmm2uvP/9hx3E++OzZa8Uf7V/65ufft+Ks3PPsWSTT+9qHqkTCIl0lb4CQYOt7cQKZmFaWYDjHEE9RE7EwQJuaWF9q3KljfRacCdw1t7PZqW1m71+KHllxnOufLM5I3b/6neMPftBZ+aWn/yajJERlVCUY2lmUvlQhwQ33hZhBSQmG1f3xRd3d5YmlJ7uSwUEVGptACRe/vkTHP5968hbHed+D0fcG+237/X9+ff1P//3D7iH3wdXo7NTRfoQKqhJcuk63zRJc6HFFjmDCBKzPoEuhftYr2U7galVPAPHO36/etOI4tx754ldWh/zuM495t9z9+Ne+3ntz4WdHGabcdpxcNM3/PwgJ9m0a0YdIa7CaBMP3DWUhCKMUhgZVC4QLBXiw+K1mlnn/wgnPcZybVk+/U5Daa7uvfNl1Vt73SPQ9UuEalNgug9/x/MCwzdtxMJSgvhCEadLdVNxy/oZfCFqT7aS71U22k3Q3lQ/d+NNX0HGxba4jgXYtX/vN6yYlgjnn/L2t4x+9fopZjVClhETC9Oh8YZLVybYa9EBktwoFkzKc1YShqQqxJBTC1XwvH09TyKMw4Q2GR6KdiyaLhfCc3eid+MdJge73oyOHyBNckxISXK5lmvQFV+0SqZMyJwO9EGQKJiwyntidpsJi8lBns6NPfDnnnF/77vMfvs5xvOdff3v6T6//6PGt9yb8mFCihASLNs+q6dHyVlyDlMyKiFvfW/doI46wCFyQjecZGmg3sX8penDFcW780is/HA+C998+/Xu3Oo5z3eej7R+ZPpMFpnSuNt/LlV6zjNmZVzQRcSbKe4O9nR6S1trEkpNdyeKLsYhw4dHI/fne5VNfuN5xVh6MLo0p8P7lzdWP3Og4H/zsS/9AAlwHk9tlcmKF3XSwTARjiMcJojX8v1efuX1SnuGdN0+f+I3bb3RWPvIbL333Krkh6mFSgmWnnthqaUMQoGhbTBAt4b0L0RNHPn3f7e9zHMdxVg7d/skjQz55+6GVlVvueWz162ffHG8ZQZSmigSLPk/z/51041osU5bnoJaFYH1G+V+CIBqjigSLTbnOZmf+hoC0plWdWFEX5RPIrmTCdUe1GARBNEZpCWZ9Jk2I86ewwEC4+Yyw7M6jEIbDJhiY21YRBLFIVJHgcv0TZBza/G6Y9KLNC4ELTSEsTpchCGKpqJKIKNdFLM8Phsg1XKYhyzEUssAwBKaZsgRBNEYVCYb1Y0oTYaU1wnUbSkfIwhAFI0QhBKYG7QRBNEZFR0TpZbt0hvm+cRXOsmHcreCHoxCYIAhbVPQFQ9kqdAyZDGPDSg2jKgz1N5zf4YFCYIIgLFJRgmH1ulL7YM45Y0Nx9H0jhRK9Xin95Zz3dnoUAhMEYYvq1XGyjZNSFCzIsmEs7Lqa59vL/Tehv8qBNoXABEHYoroEi8ZppduJwYyE4/Ag0DDlPk1Hfqda/CuJzkfJdkJeYIIgmsfSVItud6iYQjSrCXGaDs2/IrK2VYZHEARRHnuDhdKUe96IEAcBTxKlBEKe8zgeiXxFV8z6ATVBEESD2J7tFkXDDTR5+D4PQx5FvNfjaXpwJAmPIh4EReEW9cfl08rZlYzmwhEEYRcNEiy6RoTnworbWYzxJCmGtIpHEFSouIPToCkFTBCERTRIMCyWq9XpUaQXgmBCXFyIecNQNWUxCTgVkVwQBEFYRIMEwzINbZ0eGRumIGA6ojZwCClJMEEQdtEgwYUhg5hFLd/L4bhvag1MEIRd9GzHwaU95hozf8OHM2gpEUwQhF30SDDc4HJOOjidBmLYhzxoRjJBENbRZkqDGWGcASYM1cNz5SroCIIgTKBNguFAI5wZYSnB3rqH8A1BEMQSorM0A5oNNP5aXSTbSXAmiM5HNJeIIAgkaNbKdDeNzkcleqcRBEEsMRjDVYIgiCVhkSW4t9MLzgSdzU49h8bbb7z0+cMPn3xT23kRBEEcYFCCRVIiOh9Z2ZqDZdPR+ajqr9nvf+9PHrzOcQ6tnu7rPD2CIAhuVIKlD9ddcxveAYP6W0uC97fXHr/VcRznxi+98sN9redIEATRiAQ3rMIF/a3x0dd2X3nmo3f/0ocdx3Eeji5RGEwQhGYMSjCcjNmYCsMKkbof+vaZZz/+6y99+8QRx3Ec7/nX39Z6pgRBEIa34/QFpEoUuqDV+7i30+Ofvef46z/qn1495DjO7aunr+o8V4IgiAYcEYWw1DnpmFNhfamP/f73/uTBD3/l1cvX+LWzz35wxXEOHYm+r/NcCYIgmjGldbe6zTTxkXLvrXu1hH5/e+3xTx49tbPPOeffj44ccpwbvRP/SPtxBEHopSFfsCaL2HxYn6W7ykkRzgAAAf1JREFUab0WENd2X3nmI5//5qUDxf3nU0/e4pAtjSAIAzRXmtHb6QmPcK3hRgPS3bSz2fHWve5WV3NmY+87z3ufPZ7Kzberp1dvdxzn+idPXdb5MQRBEFar4/K9PDofeeteZ7Oj2L0338vji7G37sHMRnwx1ndSb58/8fDHnz0D3A8/+v5Ln3UcxzkSXdL3MQRBENyuBBdyxO6aKzqZTcwkJNsJnHlhaH9v/9I3f+2OT3z6yAifvvuWFcdxPvjs2Wu6PocgCIJzuxJcmLUBD3/DhypcaEYMD53N1/d3Th39ladfebOw7XZgS/vp4NV3aEOOIAidWG7TM25ZmzhbsxAvi5A5PBdqSSsPuHb51d/9+ON/uTMms++lxz9KBXIEQRjAfqc0kd4dTzJA7xrrM6nCwZkg2U60j73Yv3r6a586evLSjyb87FJ0xHEc577j6Z7eDyUIYsmxL8ES1mfCNRGeCyemd83VdOxf3YqOfvz6x9YmB9WXTz15veM4H37m1R8YOgGCIJYTRBJshf1La09/4pYVR3D9Ld6zr15+D/70S0fulj92Dt1+35EvvJRSswiCIPSw7BJMEARhEZJggiAIa5AEEwRBWIMkmCAIwhokwQRBENYgCSYIgrAGSTBBEIQ1SIIJgiCsQRJMEARhDZJggiAIa5AEEwRBWOP/A+vbiDAzi5LlAAAAAElFTkSuQmCC" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAIkAAAAuCAIAAACTX63IAAAFo0lEQVR4nO2a30tbVxzA+z+cA17IU0AGcplQGTN9qI7NwOxowCFdaGgN/lhZdIXUPhgtqGVToepDMqajI7aEWiI0SBsHGXg3bEs2TFGH6VQwnXEJjZ0/YjSpuXruHhJ/5t7ckxsv3ofzwafkcM73ns/J93vOuZ7jCErl3FkHQBCEuFEuxI1yIW6UC3GjXIgb5ULcKBfiRrkQN8qFuFEuxI1yIW6UC3GjXIibrOzODhru+3fPZvD83LBvnt0ytDIRdErRnBZohemuNRprdJoCCAFV9NkV4xFqdFqtsdU2OrXCigXO+npLe31s7hGw0aDP88jaZkqPWWey/DA6HWE5juN2Y/7HPaNvRCctHzdsxGMpBupL9rk9yX3wLszTWq17c/ZKNQQ660zs2OdoK+j5TltA0fXOxWTWKZLi5v2Kb9ii01SYB8Z8S7F9/SgR8jl7Wh9MhWYf1tFVJ0PiQ7obtPaiW1sIgarcOrUjuRfeh5e8Wo+DIu5GFYTne/7YzhCAllz1xRBomtzBbHJyjYT9d6LvOk1f72P+SWT2i1Yn+6/SH1D8IWUg2U102tbceEMLAVS3MFGpvcjpBm17e0oAVJncfDk3NmPViQefUySJuSe3PqfoG0P+DaGJRyFXvUoopJNIc4OS846b/d7l8TY1gJTBmXXtZUVGN6nZF0q575gWDQRUSZd3O9fw+Fsuj3dcpoCm0RXI1nxnylpWbHAGcCZMkhs24Lp9j1llUwsTVtoXJBcc+dygkNtUAkFFl3ed59v4ZO9FFQTlluwbGdxI4ovOJhpgFLC9OXtlNU6x4SS5YSOenjueEOK4vQX7JQChuo2JSpUjn5vNifYPKagyuyOZHSWCLjPWVOJFgsLPmmgKgi96fRsiTffm7F/dwyk2nAQ3aO1lf+fTIIu4g2LL//x4yOUG7czYygGEZbaZnRMTsRvzP6yjCy+YHvljYntBrEi2/INXKACpL4fms5vOkVzdRKdt7UPz+yk6yrSoIQR6+0JC4vhyudkJOhuok+WEjYX9jL1VX/Vt39PZNdHDDWYkO1PWMlW++1U+cnKDkvOOm7ZX8YMP0gcIgZyOg0xu0sWG1nc5XEd54rBabrf/NPYqjJdWMCJJJ/Z8JkGAXNywgdG7P09uHskDKOA0FEGgaWHeSRxfJjfb3q7zFCxocAYzljJan7bpqYLLHePL4iOIR7IXZdrUIL/ELgC+GzbisZSU6mqO3n4Yr+lK1cL7VJxeZXGTXss8xYbjDsok3ewOJ6WEd3yotBucDVFy8dex13GRRofgukFrL/vv/hI++aSpM0QeqVYWN2zEbVZlObukyyTGz108kv1Nh7ib3VWmt82TMYXCYLo5vgU4JLFg1+d1NSCLm/+et38CQUmjO8Q7ESjoNBRAnns2zPBOkMqfojkt+Xro9pCf5yZHEBw3qVuAPzd5uk3/oqVfDcjhJrVx4i02HMdxMf/gVQrncIMbSXTaWk2B4nrXkmB3aMM/PDAyj3XkPADDDRtwNXcKpOb9bCv5akAGN+mfBX+xSR1uKEr7/Xj4vcTwMkeMzQzVfkxpuydW+Jqybycf/DjMc8m2Gwv87hh8/FuAb9mLukGJpee2elqgqHIcivv6L+ZzNXD6bpIhVxNfsUFsbGlypLOqqPDCN/e9OGJyiQTF/nKYPqWrOkd8ocO8xUaDk67+zgHPIt/sp3e5gllH0A1a89pM+ooiCgIIgVqja3b4t458vzXvvFOXfnmVanDNWNvL8C4cjuO4tx7zRxDAPP9UZs+qUMBhT6fw+zRjTVWF1mDuGBw9Onei5LRK2NWFiRGr5esqXXWN0Wg0NogNFw+4O3Sl1a3uRd6kRN5JZ+WU3iRJg7jJCnGjXIgb5ULcKBfiRrkQN8oFrfpf/L1+Rv9+R9woF+JGuRA3yoW4US7EjXIhbpTL/1OKwj8JHAhiAAAAAElFTkSuQmCC" alt="" />
马尔科夫随机场MRF联合概率分解,用到clique的概念,翻译“团”,是图上的连接子图。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAQQAAAD5CAIAAABOEdwuAAAf2ElEQVR4nO2dX2gc17nA57168UOh90HgohvwQ9sQzMQk+CHhXocW04xpMCa2WRSxwRJJkN0wthMkuaXeBFchwd6C0oLoHeGCAx18QZRqi0NidYjbWpdxiEXuJLWLO44a24wjX1kjWWvPdx9mdXZ2dmbn3zkzZ6XvxzzERNoZzZ7f+b7zXwAEQQAAQCj6ARCEF1AGBGmAMiBIA5QBQRqgDAjSAGVAkAYoA0INwwBNA1UFVQVZDriqVVBVqNXAMMC2i37cNlAGJD2WBZoG1SqUyyAIiS9RhEoFajUwzaL/EgBAGZAUWBbUarEEkCSQ5bg/Wa2CYRT5d6EMSAI0DWQ5tI5XVdD1iAJtmmAYoKqh8USSQFXBsvL6kzygDEg0tg2qCpLkL7hukpOl4No26DpUqwEfXq3mrQTKgERQq4EothRTWQZNo98CNgyoVv33ylMJlAEJxTD8FXYORdO2oVZrua8ogqqyvakLyoAEYNtQqRSctGhaixKSxLx5jTIgfgyjJVepVIppzsJ6W8X7MExDRDfJYINtgIEX06uqWqTk/YdU/2/9K1qfbEFKpSyrpQurXGY1YMevDBZYOugKKDLIIojJh3TwSnjZO4TKlea/K1cEewf1u4ggyiAroGigJdLD244XRSbjdNzJYIGlgFKGcvGFY1Nd9g6hfHO9wK4I2q/yua8EkgKKCbGKtmk2hyZEETSNctnjSAYNtDAHZJArUFEb017wonz9xvzoP8v/577rfxfrvzE/YnSjClRkkAO/4jKUNYgu3b6WPV0fuJBBA00Cyfd2KlCpQS1mnYGkxjSb6Qe7dNx/UzA10CpQ8SXAIogqqDZEPES1ysSHgmXQQfdpIIOsgRb5OhAqFGKCDx30ClR8uVNklFAU+j4UJoMNtu8VVKGausMBSQEPJhAssKpQ9VWLncuDqjZ/mkp7uhgZdNC98bECFdQgZ7gygeBTQgSxc4gg+ZIoUhgMKUAGFVRvQDSg0Gm7mxI+TSAYYHi7UqpQ7fDDxIfsf0jeMni9r0IV2wb5w7kJBAUUb8oUVlRsu9nfqiiZ7pifDDbYXt3j9KM1MdYXFCpKcxGh21+nabwslOoG8jDBNEHXG98O+bIUBdT1FZ+x8abTZSiH+WBZzT8qycf7yU8GYoIIYqwOU3c9VeBakvbLXV1CZWKxszj/wVip9Povju7f1X/m4sJKfeGjd4ZeHTn1Rr90ZOrqopP1BoXB1gRNg0rFPwM77JLlmCshTDDj+KDrjQ+WpPR/V04ykOwolgmG4Z8zGf8SxWwTLJeMqdGx88aSA+D8a+bwE1sOHntz4N1L9+rLV96X+nq2DM90aUuflQmWFbAKIf4ly5GVuc+HsB8jRSZ1spSHDCT5izbBNANCQbkMqgq6HpAOuemTogSsIEyjhLNm/PbA8QtWo/Jfmht/RhD6Xjx33YEVY3Jfj7BVmpxfS/ihPMDEBNtuGf0iNbOigKYFFHGy4rP9K45SwutDWHvatpt/Y7rEmbkMOujkj44wwTuO4r7WWi3B92ZZoKr+VSG1WpKH/ebSyVcn5u+v//PrmeHHBeHA1PVVAID6nS++uFP3/YZjXR4/MDj9VZK75A0TE3S9JRqIIihKgtrHtkHT/FWYonR4OK8PYQ3OWq0pVwrYymCBFfkHALTOwHK/sSztIN+qkEol9vfv1BcX75M2wf3Z0V5B2Dkx/zDkh+98Nj1+4DGhr6T+M/3TMoa+Cb6A4NY4qT/XMFoChSR1qNVJxdohxSDffIoSxFYGMiurU1ex9+tKXJeH4K4K8dqVPHA+nJ/YKQi9o7P3A/7ninHu+KGjb02c/ukzHMvAxARvtdWxLk+AprWUgfD5FWSQKqzxYBjpgwNDGYjHEkih4wma1lJk6S6pMs1mRZF4Cvzq9akDgvD48MzXnX5qQS3xKgN9E3zvM0v0bse2W0JEuA+kW7IGwfUmsTVpBchKBhtsMgMvdIzZNFvau0yew26ZAh//9Tg3pwe/12wwAIBz/Vzprdn7rT2rvMrANiZQr7YIMeajmmCSZCmwkiUVbNIyxUoGEs5CEyTv18XIBBfftxheLpyFPxwRex8b+P2NR+Dcmh7cIgh943ONJrOzPPfeT8b/tuz7HS5lYG4C01Fr73yjkMqLlC4VgtdEuwFMFJM9KRMZbLBJuzl4Bp735TI1of12lUrIDz28Pf1aj9Cz7dgFy/nmyplXSqXnenpPzN53AJz6wp9ODJy5fK+tKc2fDEz6jihOAEp0u5AhNFLAwoIDaTAmmt3NRAYNNNcEBULGP0gvajl0DIUy3l7okDa6s/Tp1NC+/pGTo8OHK+c/X1q7efH0oNT/xqnRw4Njv5u7vRrwO5zJwKoXlVTVue2TQYbQQiqvzsHBsqKqviCYyEBaC8FhgTT483y5vvvSqt54koHVyBppNOs6jU9Mft+glro3OAR+AEkF4r8H+jKQ9k1oa4F0GlBf0R0JiUi0cjNuZGA124IkHInqWCqQykuSAv8/meOjQ4ClZAAufimjLwOZfBH4iJn6gbPjTZaoBCU+ZGBlAnldFGNpIkiyFFSiO1e7pKsyfr1HXwY3RwoLXs2wQLeXOj6k4y3T5PeHd2ff6y+VDu7e3iMIPdt3HyyV+sdn71J7ygQwnItKwoKay16n7ZDcPyQ4dC5s7msJ+dUAKMsQkSORv62QsEAgtV33w3ZWNsnaC1wBRIJDUO1J0pDAsSzyqzEfn7IMNah1molEUvb8WwuBj5Fni5ABbE1IkWewgPRlBT2GAUaHPiUS2GJmIZRlIG2a4H6kFC18FnDyNWeD+Zo1fqqMjumOW95kCMg1SPs05nw3yjK480YkCHpu2y6sX6IdNwGIn05yRh6rN92ai4dkkozBBQ1Iu0UusNlAsvKYzUPKMnTQtBnvqMxLzQh5v0Xttp6BnFb081NzkT6PoOyaJCOBQ9GJmqg0ZbDA6jRjJGkGxxTSC83DwyQhJxNIhlFUP5IXUsMHPQwZig5sQ7sZQAEydG7NNCtjHuDqy45Nfru8kDBeeIPBJbyGJ3N/AmVwe/JjpsNMZAjuSiIjDDzQsbLhk1z3O+IqjEOnGr5zqUtU6JjIELyAIZGkOeC+pD17mnv7cHyZgxPidx40TPjBHfvIz9necc8evmRwC09HGQLzEb5lKHa4zYv7krrhMoWXRWGlYYJw0xZ25Hd3TtiYMmBk4DwmYGSgAnms4Cl6iZ6LNV3SZihsX1Te2gzuoEdHGThtM2BvEhWK3CG4e3qTyL4THXqTCpABxxkoUvBe2VxVFhnGGQqTAXAEmhJc7Brv3r7LR6CLlKHL5ibxMPGmDS5MgK6ZmySDLIQvaShSBnJMW/CuYZy8X45nrfJiAvA0a7VjzdUpGSlWBrKeIbhDibf1DMU+RhscmQARCwnyg7Rekq9ngGJlwJVuqclugrP02QfHB0ry2NF9z/ef/nihvrJw8czQ4JunRgakobNXl4L3T+5Eur246EJypOQr3aBYGaCL1kDzlCNRiAkr81NHKuev3XMAHGvm8L9tOzhydOCtT+45965M7O+L3DQ2kC5fAw2Fy9B5A49m8C0kOHh34+GmH4lGdrRsTA4f//BWYyPY+tx4nyD0DJy78QAefj75w16hZ/+k4d8aM5ou2R2jAqFdMgXLQNK46H2T8m+ZkaqOm7BAp52w/MnJF349v7a+KbI1M7xFEKSp6w4AOPU71764Q7YDdOoLH59+ac/zB/fv3t4n9p+5uBC0UyChwDcWtW9SxKZEAFC4DJBoR7086xvSiZTzTn7h0GsxP1j8ZnldBef+7IleYcvOic/aWwnO3T9XXvzZzMIqADhLn072PyFsOzZzy38gURPvTlN5ZrZRO/lF7qjnUrwMpE8prI3f7M/JLVnyvlweRv0Y9h0tz09IgvDU6Gy78KvXpgYH1BtEmwdXzjwtbHmqfXdxL1241yqheBkiN0luKZo578LNxxxyhr2ozpdTUq+w5fUZqz0wfDV9aJvw2JHphfVTGt2jup6bNB51/Mycd+EmdWVI7hC9zfs6xcsAvJ3PELXFec4wHU9onCzRaDAAADg3zpXG3MO4lq/9/qfPSu9durvuyeqlk1s7nFu3jrc2+fGP2b5D72FOUeczdDoeDQA4kcHrbujJPST+svMh9ck9zGBgwtrCH4+LPU8MqP94BPVb08Mtp6zA4tz40PjcYtAvumlS767T/xPd0/Tll/CtbzGPDzFO7iHzQUPzDg9cyACeldodDrLm+Ew3JrCJCV9NH9omCE8f+/CWszR35qVS6Udb189lXF248PbAO3+55wT93pox9eK2x/r/K3o8zvvc5H1SP9ONtBPCTQDPqZmdWwuNH+ZEBvA8d+ipJdB6onDHkx6T4T3ts+OBqrnBLDt6uHT17JA0MHJqdHjo1HljcW3h49Mv7e0fOTk6/NrY2cu360Eq1M0LY9JTgzFGpr3PfeoUk9M+fadKZzjt0wdHMqQ8B1qOOC8+At850LK84dsJiambF8YO9J/580KgJ17am3a+KlySMtVfSc6BJkNYAghh50D74EgG8CRLHQ6yBgCw7WYfAikympag1FgW1GotGogiF2tTODThxKsnLpiNRsXqpZP7mq3tFjp0ctRqLXW5JIGqJshybRs0rUUDIeL4ehNMUrGGHXrbDl8ygGekMMIHaKsnSNWuqmAYAe/aNEHXQVVbAgv58jbayBoN6uaFsd3b9sq/HF9ntLQz8OD3yO4+bzedtwpTFND1gAressAwQFVbAgv5rY65gPck5cgeJC/cyQCedQ7RPkCIEvEvbjQA3kyAu5fHn+8RfPRKU1/6A0P8jm/LgmrV37yOf8ly5KwcG2xyEHoZypE9SF54lMH798TyAdbTnvYqP+yqVJKlVezhzITYpBgCctOe9io/7CqXY6ZV3uwoqQnApwzQ5kOn9nQ7hgG1WkuEffJJqFZBVaFW43NR/yYyof0TNA1UFapVePLJllzXTXdjvwsd9CwmALcyAIANNsmXBBAUUFL8ec2XyzGb1wQfGTbLIr2oqU1Iev8CdjEi7WkBBAmk0PHpMLiXAU1okkoGE0ySRCRtMWe5fzFbennDn/vXdp5u1QLfMqAJLSSUwQabLA5Lk05nu39h+9tZYJHx6WRKcCwDmuAndmG0wFJB9VaRMsgJqsis9wcoUAYXHXTSf+xeFah0WLgEwK8MaEIAMQqjDro3GlAJCEnu36T4nU9tsH1Vgvs6qlDVQAuoG7iUAU0IJqQwWmBpoFWh2v69q6CmaysnuX8wxctA0EDzNpu8L0gGuQpVFVQV1JoiGEcFQykbYHByXTRvfF985D7u3vLqp/bfC3+kWNfti8bPv28cFYyjgjE9yuQWStk4KtQUwf3uqlCVQfYJQLpSalCjqIFLt8rgYoKpgOLLnbi+zJcFsXGSiFC+Kdg7in+k7rkkkBRQYs66S0F3y0BwI6kCiq+dzdeFJiS/3DgfnAPTZoPI0I4JpgFGI6xzkCZhdhR9KeXGjcAwkg4o0WDDytDA/eOKbkBjizkWRR/XhDIwB02IC8rAlqJlQBMSgDKwpVAZ0IRkoAxsKU4GNCExKANbCpIBTUgDysCWImRAE1KCMrAldxnQhPSgDGzJVwY0IRMoA1tylAFNyArKwJa8ZEATKIAysCUXGdAEOqAMbGEvA5pADZSBLYxlQBNogjKwhaUMaAJlUAa2MJMBTaAPysAWNjKgCUxAGdjCQAY0gRUoA1toy4AmMARlYAtVGdAEtqAMbKEnA5rAHJSBLZRkQBPyAGVgCw0Z0IScQBnYklkGNCE/UAa2ZJMBTcgVlIEtGWRAE/IGZWBLWhnQhAJAGdiSSgY0oRhQBrYklwFNKAyUgS0JZUATigRlYEsSGdCEgkEZ2BJbBjSheFAGtsSTAU3gApSBLTFkQBN4AWVgS5QMaAJHoAxs6SgDmsAXKANbwmVAE7gDZWBLiAxoAo+gDGwJkgFN4BSUgS1tMqAJ/IIysKVVBjSBa1AGtnhkQBN4B2Vgy7oMaEIXgDKwRRBAEMzBCTShC0AZ2CIIpvCy+J0HaEIXgDIwxRReFoUVNKE7QBnYYZqAJnQTKAMjWlrMP7iDJnQBKAMLWkwQbtpHfl70E8VjM5sAKAMD/CYIO3I7FD0Tm9wEQBlo4x9PEHaEzVrlCzQBUAaqBIyshcxa5Qs0wQVloEXwGDP/MqAJBJSBCqGzLTiXAU3wgjJkp9O8I55lQBN8oAwZiZiBx60MaEI7KEMWouei8ikDmhAIypCaWLOyOZQBTQgDZUhH3PUJvMmAJnQAZUhBgpU6XMmAJnQGZUhKsjVr/MiAJkSCMiQi8epNTmRAE+KAMsQnzTpmHmRAE2KCMsQk5Yr+wmVAE+KDMsQh/d4WxcqAJiQCZYgk0y4vBcqAJiQFZehM1v2OipIBTUgBytABCjt/FSIDmpAOlCEMOnvg5S8DmpAalCEQartB5iwDmpAFlKEdmvui5ikDmpARlMEH5R2Cc5MBTcgOyuCF/l7Z+ciAJlABZSAw2TU+BxnQBFqgDC6szk9gLQOaQBGUAZieqcNUBjSBLigD2zN12MmAJlBnk8tg2yBJzEwAZjKgCSzYzDLYNpTLLE0ANjKgCYzYzDKQezM8SYS6DGgCOzatDIrSuLEosjxTh64MaAJTNqcMut40wTRpfWoQFGVAE1izCWWw7Wah0jQqH9mGZYFhgGE0brN3b+OfqWMQmsAO2258O3v3Nt6w+0/LyvlBCpChUmFTqEwTajWQ5WapDbxEESoVqNUSvGs0gTq2DZoGlUqzMzHskmVQVcb5Q4O8ZSAJkiRRaiq4r5V0SyW6ZDk6NnU2wVmc/2CsVHr9F0f37+o/c3Fhpb7w0TtDr46ceqNfOjJ1ddGh8SduKHS9WR0muiQJajWmZ7bmKoN3VMEwMn4YAACoakAcKJdBUUBVG9H2r39t/IeqQrUaoI0khSoREROWjKnRsfPGkgPg/Gvm8BNbDh57c+DdS/fqy1fel/p6tgzP5B3peUbXA+KAJEG1CqoKut7yZdVqoCjN4ukN7KrKSIlcZVBVermGYfjfbKUCmhbrNVkWaJr/RcuyPxZHmOCsGb89cPyC1aj8l+bGnxGEvhfPXXdgxZjc1yNslSbn19z/Wf967uxo/6E3f3nyteefffn0xZv1rH9/V2FZ/rddLifIVHUdqlW/ErpO/THzk4G0m0Uxc9OI9MuSkpruEy3L/5Zrtcb/im4nfHPp5KsT8/fX//n1zPDjgnBg6voqAED9zhdf3Fkv8cvXzh1+8czckgMAD60PR7b17K58cmezZFCa1hK9ZTllVmDb/kSgWqUbIvKTgYQFVc3wKd5RazcaZO9zMM2Wz6xW4csvY7SYnfri4n1Sou/PjvYKws6J+YdtP/jo88nnHt/3/pUlp/mTPf3qwmawwVvXlMsUkmPb9n8mvU6nnGTwhoX0MntLLfVASWQVBPj2t5Pmcw/nJ3YKQu/o7P32//foi6k9W3v2TF17BAAAq5dObg3RZoPhLbWKQvOTDaNZW9Ebq8pJBk3LHBZ8c/pY9LV5X7EgwLvvxv7N1etTBwTh8eGZr6N+0lmbf3+XtzmxUSEmsMnvW3IESj7kJAN57JQxLY85fQAAYJrw3e82c7CYODenB7/XbDAAgHP9XOmt2fu+TGj1zvwfxvc+/XzlwkJ9QydJXhPYDRF4SwWNrvo8ZDDNxKXLD+mZZmqCi7fpHB7InIU/HBF7Hxv4/Y1H4NyaHtwiCH3jc40ms7M8995Pxv+27P35u3Nnx8fHT/507zMvHJ38ZCPLQNIA5pNtWn3IPOkmDxlI30/KaFmrNV8uaxNciL5C2IDIw9vTr/UIPduOXbCcb66ceaVUeq6n98TsfQfAqS/86cTAmcv3gtsEzq0/Htm29dkTH93ekDp4qxIW2VE73vw5U+dMLjK4jyqKqX7Zspovl85AXTyIgZIU+P+dpU+nhvb1j5wcHT5cOf/50trNi6cHpf43To0eHhz73dzt1cDfAgAAa3b0KUHYffrKEqNnLxJSoLKVy2R4K68MnUvMZSDPmXKgjWSfdLsj4kDne320dPndZ3u2D03/cz0SuMNz2w5Nf0XjKXmCJEjlct63Jp2BGZIl5jKQGjZNzLQsis2j9HfPlJ49Wrr0tti3d/zS+ijb2vyktFXYdmzm1oYbhibpSi7z6kLvnjaDYC4DafqmKU4kLLCa6h0FqW/IyHQKnHvXar8eHX7l8Ojb478cObRr194R5dJChzyqOyFhoaiJvWTGftrgwFwGN+FPEzZtu3PWngfe0IR0Jmv3efHPwFYGUpbSJPwkwcpSK2eHRKdCQn+3QL7pYs+SzDa4y1YGErjSlGfyaAXWNOBZgZF/C76LIDVXUQmtC8kmUrXg2cpAUu40TZqi+iXaSZ/qbRpIOcq/n8MHaaQmr0PZykCG2xK/IhJT8uyuDiNTJ8DmgIccySVD9yVbGdJvd0D+pDwH2sLIFOA2AWQsiYeaK0M1mocMacaeSUwptsHgkqnpswkg76fYBgNBSDkTLg8Z0gTPorfQaYGrmo9DeIucbhsvebFjK4Pb7ZtehpTzmRhAcmJVxct/kULEiQxp62C2MqRvVqWPKWwQBLyiL046GDamDPz0ZhZezrri4mRckk8ZNkibgQzlYJshEN7aDBtNBtK1zwNcDXpwCJkEwYkMaROSRA3VHMcZSGXDQ+QlX3Y+S7e6Dq4qCxLGk0+eTVR3Jy7U6et3Uv546Lomgx48mMkhGcoffTIMCiWKKOnnJiUuRVkXyFGFTAxGwnAX1vAw0Z3UXAlztqRGJy4NmZJJTt4veUnp9/bYBPAz0T1tzZU012N+gxbI+y22WcbJsgrOIdVesRPdybKK5DVX0gl+afKE9LUqWUhQbKZEVtbyMEuKW8j+ocVGcpIjJW9qkro35vecRgY3aqWcV1F4QSShbcPlSM7SZx8cHyjJY0f3Pd9/+uOF+srCxTNDg2+eGhmQhs5eXUq+EWzhC9a9G/omJ2lBTSNDpmSShK6iggNvs25osTI/daRy/to9B8CxZg7/27aDI0cH3vrknnPvysT+vlibxrZR+HrxDPu8p2gYppGBJDtpUm7vWYj5t8xIHszPFCk6LBuTw8c/vNXYuqY+N94nCD0D5248gIefT/6wV+jZP2ks+3+pfl0d3BWx1xOp+fJvX5HN5lLt60O+6vgPnkaGbKtSi9uXyuvhBgsLy5+cfOHX82vre5pZM8NbBEGauu4AgFO/c+2LO+3b2KzcUIcfE/pK6j87fbJ3p6mcM9tsO76lWCuasqM9w6pUAPD8nXn2VBRy05x4sPjN8roKzv3ZE73Clp0Tn4W3Epy1v/+uLP1oZ6QM4MlV8qy8st00XX2dUoYUMagF73ar+TTOSLgvZCe/XFmen5AE4anR2fCKas2YemV89uoHpTgygKenP5+WHknE0+bS6cpnShko7AZGnjcHH/LcUb1wnC+npF5hy+szVlhgWP771Bs/m73tLKhxZfBWXqx98G76nbahkm7nsfTzEUhVm36qm/eYKXY+eI9O5GFaFGMaJ0s0GgwAAM6Nc6UxchiXs/K/ytDPPr7rAMSXATxd0kx90PXs1pF5P0l7SdLLkHkbTABoPSOM+gRJ38l5G9aEtYU/Hhd7nhhQ//EI6remh1tOWYHFufGh8bnFxr9WPn3/lV81DppIJAO0BnNZpp9tkm73bL6lrqYzzVSj02XvrbllmVqXhe9U6Q1rAgB8NX1omyA8fezDW87S3JmXSqUfbV0/l3F14cLbA+/85d76ydZX33/jncvr51wnlQFaD72VJGqdcr5TpTOYkGVoJJMMdIIDtFY5bojIUuv4joIWxY3Wkern4dLVs0PSwMip0eGhU+eNxbWFj0+/tLd/5OTo8GtjZy/fJudr3Z4+tGX77oOlBnuf6RN6+p55oVQ6ds5YiXs302ypZTIeVdx+FHS2AQ3Sz5mi9ss6h5n4nHWRjO/kZlEEVU38lk3TfyI6i2i+UajPjfcljQwutt0sdKQuT1rjWJZfA0nK2L1Baud0/TpZZfDenkKp870dt6O4Vot40YYBitLikvtAGzk1okB6GVx0vSVEuO9cUUDXOxUF04RarSUpopIOAICnEyld1UxhdQupI+g0gNvjpvddy3LL5fsyyI/ReLMbmbuz4/2lg7u39whCz/bdBxOlST40LfhbEEX/l+WrrciPVatUGoqk+Z06aacgA5PzCm0bNM0fiyOvSgXXNBeDrkO1GlyFhV1uzKdUZ3kHJ1KnWnTWPXrP0aRcI9s26HpjjzdfbHXrnkoFVHWjN5G7B8MAVYVKBWTZ74b7DapqRB6VChJ1sqQn1BYBk4K64ZYJILxDOk0yTp6iJoN3SigP24sgmwTvVJuMTQ+a20N4z7HGjhwkB7wz+rK3FinvlZLn7Dtkk0NjRl8L9DcOymf2HbLJ8ZpAa94gk120NsXsOKQ4aMxtDYDVlnJeH3B3IoQi3lSc7lxyhvsremejVqs4IoxQwFvJUl9VwXazUa/E5fLGX2SGsMOyWuZzsOi+Z77zrmG0DETiEASSglqtWYpEkdWcmzy2ofat3CiXcfIEEhfT9BcedvlFfnuye7tc3YQPdzpFOuBbo5VDWpHrAQW+EOEqgQ0JxEe7Bvk0OAs4raN9TYgs43AEAgCg6/5p+3mu0Srs6Jr2NSHuMg8G03sR3glcDZH/Gq2Cz3HStIAFgG6scOe9YxK1IbGs5iqVwGU/hWQKXBxqZlmgKMGLB8nbIStD8OrSq8PaTxIKFKXI6o8LGQhhi8Xx2sCXW8fxkALwJYMX0wRNa9YohX9neFG53G9TUaL3PMkffmVAkJxBGRCkAcqAIA1QBgRpgDIgSAOUAUEaoAwI0gBlQJAGKAOCNEAZEKTB/wN2VK6dLi3JCQAAAABJRU5ErkJggg==" alt="" />
两个最大团(x1,x2,xx3)和(x2,x3,x4)
MRF联合概率分解的另一个概念是potential function(势函数),联合概率分解成一系列potential函数的乘积。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAP4AAABKCAIAAAAUr35lAAAOL0lEQVR4nO2d708TaR7A93+YJ2mTvmpCYpoGEl0X4QVKdkvC6tkEoiuBKA1wZw5ZTTFGUGNho8XE4rlloyWa1rUxaz2deLm6WXSpd+AdmNZAs9az3YBx3E74IfKjQkunfeZeDIW29NdMhw6W5xPeUNp5Zub59Jnv8zzf5+EzGoHYknwm9AkgEMKA1EdsUZD6iC0KUh+xRUHqswHOuUxHi/5qnRL6RBDZg9TPDGraPXhf17BHjAGgwkmhTweRPUj9tHx06veJdylV6q4b2nopUj9fQOqzgHLoZEj9fAGpzwKkfj6B1GcBUj+fQOqzAKmfTyD1WYDUzyeQ+ixA6ucTSH0WcFZ/5YMb8iNT4cSGXG2+g9RnAWf1w4Ttmu6ytk2lkInjxFWqtbpM0KhK4qQXlVSd0FzW6S3O2Q252nwHqc8CHgIeasLec0SyZrBC5/Bl9EESV619SlLa9nDMF+J8Fggaqc8KfmL9eVubNEv1a4wefzangKCR+qzgR33KoZNlqX4zTlLZnAKCRuqzAqmfT2yA+tS7/k51t/0D+08GCPxsi8npg/yfFB+E5mznCjAAqkweKotTzFv1A2T/pabu55ldT7aECfx4y21XFh0evtWn3vV31Lfg4xxrBs6O9hxt2lz2h6asJ8QJBxa/0Ds53Hnh1acmrfpbPPcWAmS/troFJ7JpFNgR8o1er2v6kbP9/Krvcxnqdpz8ZTKbyw+6zXVVZ2zkJpKfX4RX//1gV8/gQjiLI8QB/a4bVdvb+yZz/CxaGjP/Zc+ZX6c4ucKj+tDvulElbcG9wSyPs+S4UlaY+/uYKwRXf3nkh3OPsmqe4vA7DVWlTfhbAVqrJbuurPxkn5dD0fypD9/iTTvLdPalTXWoTYjQ6ofH7rbd8fDX5ge9eIuk7IpjSZDnNPfS+VIfBl29ldhBg+sjH0cLzfSdlkrU1rxs+AVWn5q06n5w8tcXDf5mqJRVGn7L8lnPGTjT1yrdcczKuuHnS32fU68E5QYXXzOMM31qSZEwz9CNRmD1+Q304bKzZw9WbXAJ+ISe6FPvlDThbN3nSf3QS0O5pEAzyEubT9M0Dd9YardJ1H0zfB1w8yCs+jwH+ksuQzUo6Bz8KGAbFSQsTUByqm+GXbubWv0A+fRWz+0b2lbtPdcchAvjT2/rdDfvmrvbO24Pk4HV98Fxc3WCFEKfQ6cAmLREeVh1SCGLrjOm+mWKmnpliSjhJNHcsLZc6Hu6MeRI/QA5ZDEY7xi7OnsG/lh9d3SgD6f+09Owv7r7vx8432P4u7m6YH31MXN/4l3KetU3Cpk4Kr2UUUKuOFSn3CXlaYICBoa6tmFlmkF27WQK9WHQbT5lehWk/R5jjbiy/fvvex+NLUCaZvoW0orLQx+Y7xn8ONhZkKAWw/7ZSZJ8YzfUSzAAsOJG44sPzLgvXCIfd5aK9msePPcQJDntW3cDKBJvBtgR83gg/i+fOrlQP7RgN1569Jaiw/O2s1G9puhAHwbHLE1yMZCetc1zjX8+DmoKgEzniDsb6J+dIEnC3lsrAQATyxtMox+YvkDYTz7WlMoqNPftHoIk3/t4mQcgcRVWUG3+ndWxUqjvc/6gs05SND07rFUAUa3BtVZJYY9xLyars4xDmo5omjyninrX37FfjAEgP2pyzUEaUuSTjoo9TRZP8r5ReN52VprWjNBLQ7mEXYI7jx0SbuRA/eAr0ymzOwhpes6h2wfW1J8dvnItKtD3E7havrvHuRznTGDa9cSsPV6tPHi07aJOe0qlOmca8gZ9TlPDtzGNEYmrMOle4+skX50A2X+xQgQAVtzITFNS7/o7lEVNlrFgCkszLn2VeVubNME3MDXJ1Yfj9y7gBKTp5RH9bom4zkJEnW3YY9yLAWmbbZ6mmZ1qUtcH9DlNDcUAA6D0/C+vh3trFY3ppmwph06GFTVbvWwu51Ng49WHBH7h3jikaTjT314oljRbV4L7dYE+JCxHWqwxr/j+97DjmxLl2TuOibUyKO9A1+HSXTLwebcjsPbukFNfnHqtDJxzmY7KMQAwRfsvzpFe1Y6GVPOvrEpfg3LoZEDMcle89N1cSFjqRJI9+pHlqKImrWoJJt6hHVqk6UgAl64+pp52VhQADACsoKLrWdr4knLoZAItQcpm2VT6o+eumxuasZ0vwva021bchsSD87Ej+mGPWW1efYV5Gm+TJ7RzYUBTKI40dlGXkraO4MRA534mE0S8FiQneB/b0mPPg3VaYVr1GcsV2qHopUCzw1oFWAt4MlKfpmHQbaoWAYCJ5c3pkz0EVH9jyZn60Gtt3gG2XxpeZG71+hH9oPdh943IVAxceN5dWQBKO2xTCQ9O4KriWsub6GrLtI6Cr4zV2wAGgFyNE4mjYg6lx54H/+rPDmsVoPC7mJHg5RH9bgmQrOYs+D3GmvT1AScGOpVFf9r/pSijhp9y6GTsu+2fADlTf2FAUygp0gwsrPweF+jT9NJI74WfI8lS86P6A2JsZ4v1jyTVMtGnVsWN3zNdvnTqU1MDXRWFlcovC5I3/FxKjyrBoZMBtmPr6dRfHtHvlqwFizQdmcUoqOx+vrDyIpPbmLIW4ZzLdHRH7c2XvkWv9XQRM+BjfpU8e5DpOu/TO1NeDurmJifsMe6N7oPGB/o+l+nqvbEVmaAXb5KAqEfEekK+icn47tmUtVmUun8Z8rl+bNyu6n05G/RaWwvFABPLG+64/TEH4lj6KiSuwsTF+lFWFZtGfUhY6kSrMf3KS9aW0riALOTUF2MlbbbpJIfxE7i6qOJiPzMVAOde9tZLMABE+zv63yW5a36PsQaITlin8m4Fas5a/cUh7XbpaictNtAPkLab1wYnIi6FZvpOSdbGLTImNKr/InkITkOKwI8VKiO1HPK9vFkrAQArqOh4Qq5FvFxLjxD2GPfGj4iEfOP/Mht+ejq+kOz7klp9JtDfqajusjFTZXDOZWouW98RmelTS9YPclG+6QmSeD1092yFqELzmIh81SH14YWRGfCRHzXa35Dk5Kw/bnxs2tZWInwLvRHkrpsbIPsvVhR+e8c9D6MCfegbsxl7/+6ai3KC6a1tSxpMJ2WiT70TfG2MzYaDlO89SRLuoZ/aK2SlmsfkauVS70eNzIBPcaNxmCDJiVk/5F46AzMOHptMAcctdTKAgbiRyWhSq/9+UFMOCr8b8Loe9V4z3r2t77jQ83Bkan0PFRJ4g1zcgMdm2RO4SgZEJcojyhIRiHouMsEMADJFzcps3zoDAnbd55KdOvummNCK3MfIOUdTX/OVHGAAyE9aycwyuHKayBCc9QxYrl9oa+9oq61ru3mrt+ea8aGDjG9omOHpFFH7R5fhvCnBvA1F4sfEomOx58PUr7REWaPcJY25xpWrkCsOHWHum0znoLiXzrDg0FWuG/dcGrd2KHcdOGMdS1YrKdVPEOgnI+jFWyTZzAvGEvYY92L7dI45Xo6WJUzUJ6+9hNvfxs0+roxLiPZ3Dkxk2mIJksOTJnWHaTiTTojCmf4zR265E81DQS/eJEkR62YC99JpmqbDr41fb+OQ4p5K/fCY+YAoxVxd/Pm1F5a09mVsQCp8Tr1SXG1KerU5hZq0tiaeiAl6LE3F6frr648ngPqQuH/alLIel17oKwsS33OK6DvT0m2fSVwZcNLWvkfa2pfkz5nBuXRm0EV02OheTPz35KRQP+GIfgoW3cbDEj58hTP97YXlqxMxAgMnbWeORydxRF6fHupSijObnotBAPWpSav2Upp6hH733WOlZaqeZ9EdUN+47XrryStRCXDrPxh0m6olXOTjoXQ4aWsvL2rv5/DFS6H++0FNOWC1XmTphb5SwW21WBQ+l6GuqOWfm2Vx7sJA5/GH6y7J5zY3yzGxPE06SiIEUH92uEubQT1CamoE71ZXfbVP1XZRd1mjbjjW3vOP0am0Ha75Uf3BbNdkcykd+l03qgoz7mXFklB9anpQ38ykE2NyxaH6xi5bZit/od99p7GyM8mEXGZHeH2r7uuuAe5H4Be47Lx1oS/ua0hNDXRViIC48qp9gf0IVO7VX03H2jj8r8wN3+R6MwG/y1hXw6KXFQvv+/BQU4Pddc3cNkiBFPmks+HcA09utnLhRsjn+rFRLk4xJ58GodfmbhBw6t+X6lpNMWOmGwn1rr/z2MkHrznvqbIRu6+FfO5fH3HZ/jdADP4cvQJm88GkWBUAUU3P6CzHOs5T9Wmahr7Xjx79lqstqJ49GPJmcxfQxoMsiKRel7Va33K/6fmr/qcFUj9jVhbcFKddaZCGmJ2WMx0RZxZIRD6FdlrmAaR+ZsDZ0Z4acXzyCXvi99cHktpr9nRDKNDnedimiErCQ/vr8wBSPxMCXuvpIkycYBXF4vDVvw2nHdBO/l9VmB+5QnVaq+u+ZiOiZp3CPuf9bt0lzYkDJaJEKajov6pkB1I/LaEF+9VKERCvZp6uAReHrl/IYOotw/+lFZv9G8l0SvOTj6t5cgJSPzWQIvBjcjGQN5vd6yd0J21nv8vPLeK2AEj9VMAPz7oqkmWnwaDbdLAlk9w+xGYEqZ+cSHZawk1ToM9pavgysjoZ8emB1E/Cyj4CibLTqHnC/qCrdicQ/dlCLCf+OGLTg9RPSJC0npSvLKqoj1masrK2BqReAYTY/CD1EVsUpP6mgv2eewiuIPU3Cxz33ENwBam/Gchizz0EV5D6wpPVnnsIriD1BSe7PfcQXEHqC0y2e+4huILUF5Zs99xDcAapLyxZ7rmH4A5SX1iy3HMPwR2kvrBkt+ceIguQ+kLDfc89RFYg9QWH845/iKxA6m8GOO/4h+AOUh+xRUHqI7YoSH3EFgWpj9ii/B9z4xDhSRaHmQAAAABJRU5ErkJggg==" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAOQAAABHCAIAAACYvXyaAAANUElEQVR4nO2d7U8bRxrA+z94JSz5E5IlZFkgNc0R+MAVtViijWIJrmkRtIkF9KIQrpGJotgkChCFFyUm17N7jaNwdlIr1zpXVpzOOcVNcXS4OqjsKLgX52JOUGVTW2DikLABg9eZvQ+72Mb2voDXdtadn/wJvC94f8w888wz4zdICEQkvFHsG4BA+AJlhYgGKCtENEBZIaIBygoRDVBWiGgQnay419CASJC8vcobzf+JFefqXWiIKOAnKT5EJ2scn/2yqSzxgKVVWtu/vTvCM+O6haLjdovpYp9Wo66RpklTec69+orh6huYa8xgGNRpVIq0o2Rq7QUDDy70aerSNJXu++B434hh9FsfznRdCEmKUFaSJPFHFo0saYnG8gjP6XxE2O+yG3uatvyr6kQfA45jABGeMbUqk84pDF5ezSIRQrtSTG3QTczhXBeDUIhRVpKMzdk7q5MtU+PnntV4zieN4wt3/6JtlEoQabM1EOM06NUL1+nyHGV9zzIHG1PeiFNWEhBBR0+ldOupy1XDPzwTpH0Cz/32Uw1l+w3e55zvJbwGRY6yatBQzrf860GkspIkSYRd/bXJ/rTuhDMoUHe6Pm/v3tPlWOI6XcnKSjyZHNCOep4V5GIbGHq62+rjEwtxyQoW7G2KrefR0KJJ5XDLu0pEgiDKE44Q8wA6f4CIZ7Q5OTxSalEsKsyZiXl75zHb/AbHu4ouKwg6zn8tcCBBPJnsP9yNLhQuMQFWZk1HOnn4yiErwOxtZVJl6wjqeYwT204GVn8cbZQjZQcGphaLNUIA+D1TU0UiM6DstM9zx5q8ThxdmHEvvGR/U/FlXXWPDLtXczlDOrjf3LbnxG3OXkVgYgFbW1OvK8R+WXZZiSVHz5726348Y/hCD3GqO2wPBWrNdgeIPrrWKksEAxVNZl/B7qfYsoJN39gZh1DBD0mSIOq/2lTejQYL30+Cde+lukq9c4ntQ2SVFSy5ej8z+zMSQ2B5elgtFXBYkxNRDNUqE4+/rHnUEynMTRVb1o35GxducMUqOwA8Rjv31hk864KdUeCrs8q6OjXw2UTGfy4esHUphexzc4Z47OhJybTXDrqf5Z7J4nHZ4soKgo4zY75NoR4BiPmvNEoOmv0cwU/eiEecp8plWgdz48oiK9j0XTvvTAsjiPDUsKpMqNSmYIBn/+qvlSWntQoSdRVZVoEDVtxnVCP1Zn8Rn2rEqZWxzcjsKHUVx/3XO5RSIcfdghFf9XzemJyGrTmW//FsUWUVOmCNPzDXy+R97mK1qyRJkuBne2uFTOuMMPyev6yACN3pV8mRshbT7Mrr0f1vB6zMmlqSmSxZp20+v9FXgWQlgjM3rlq+GRvuNU+FEhFqasBKhKe/7FB9Mjq9vOvnAhZszRKFBsXSL+41KCSIdJ/6sObDBoUUSb6HqulRNnzUpt5XLlAVzvOZoXpEPuB+mf3v4CsrwH3W9mpEUtfjePz6lgbFAra25Hy9tOnL2cw8hnAUQlYQ8fzZdCu4QZLLLl2NLDFVsS1gXZ+3dyslSLnO9WKXfwp46R6QSxoM3vTBNIiuLIZCmOdKqwxBJFJlu3X2GZUreBUNfddXq1D1feuZw0Khp2mZzV1BfTiHbAvZR438ZCWeTPYfkEqqO/jNNKQS95vr0wqUOF6yevOD3SoGCAw9pkxOwzaO/riat14g/7KCWMB20vowRpLkusdQJ0vKujZzaSQlYCUW0K66t433N9PPsLHsv2Mb+qxZffCIbtAwdFKjOWOdDsZwn7X9DylOUHfVYpljiu42QpODqjIESThAPJnsV1exD7KJsP+7r4aOt6ibfq8bujB06lON/vpMaA33X+/4+MZCluOocoss/zMUPGSlu1e5qv9OSID/nnxDLDn1VUn1Vf3ucJ5uOv+ybmI3jTexTZKMR1xnqyR7jtFBambAuonZtd3bQ1iA/3ei/8Ma9ekb3sXkrRHBqeFPavcpkLdGvRuJt7/0GfdzdOXgud96RClBEEmD/rbv/hVN9gQ8TRwPTPQ31av1f/WGE/8SgAjdHf6ovkYh22vwZG08Ca9BIanqcgSznpRT1o2g41SVRKrMvLO1mc//OLPGdXwRoNPAifrUU46gcMnIFAo3wAJLLv3bSOVZV4R6BJvYzUvbM6zROetgyvwwNcCoyPLUSJJcneqrlG6PGagAlCvuBItTAweoD1aqujjNmB+kmuGs/fCrVfe5KkmNzrWc9UjCa1BkC50p2GWlh9hS1eBkKO15g7Xpy+ddhZ6W4wk9FUw7Uf6+5VE+CvEKJitYchyTSfcMTdNNQ2aGFTyeOHvdv/UT+s+v7XeFs94ThmqqW+0/pxzPT1aSJGMPLc0VrJUYlDOy2t7vs/doIVQj6bRj2SfJdi3rVvyn7LIFMiexllynz7Hkb4sNiPqvNpVRYwKW3ionCiUr1RrV97mf0j9IC1hJsD577fwtbMuNF7PGD6SSvd2OXxiakkWnVmP2p6ZKonOWFh6yEuGpYVVlo/odOWPjun7P2ChHynsY3Yg4te8yZnMJr0EhqetzZ09eMcoKnv0wrGKqUwGxgPVgN3cRHVnoAVbyDonQbX2tLFufIBiFkpUyKTH6yQhYoz9Zz40nBjogiHbKEOTNkZk1pscTxxeXtnfQ8bDjuJR5ZEMf5b/e8abmyoOVGF1MLFW23whEU08UC6LdMklKJ5AJwBcXmUbp1Iez3+jLnu1lkHWrTqXTPpfZXgPcZ21/p82ebTz3egDw2SutSkR5xOp/nr+bLJSsYG16ZI9EbfRRJm0PWIknri8s7mR3H484T8p2nsaK+4zVzKEk3c1WqvsnnxAkSZJx/MFYqwxB0ofdi07tXoTtPOxE5ywtSNlxRzh7Y5VNVjqOzlanQrzAPOPDrXuRsk/tWEae5DWBKhXIf+1i4QZYVJ7o6NcBPJ4SsMbxhbsW08T2IIeKPiu2h6Q8iDi1sszgHhD401AIC0x/rVcpavu+C0W3fk88nbVQyYHqDssMFgotrkQB4TUoEIQ5JOVi2aWrYZnyzZQ1FnKcUEoQRKJs+OjwtmJreg4DQSSItM2OvZ7tKp1oK0TtYkGnW4nI3NTfLvfr9YMnW5v1Y7arJpN1whuMpj8FKgnFOEYhyZd+81lrZj4VYGi7UtqObq8Foe62vEbdot5XjqTGCSFUQ0tyiKrBVxi8RHzW+BspW+y7+ZP56FeM1eIbHsNbjFktUszLWrJClQvKVQN385VcTaEYtQGcJQFUXl3ebPtf1veAyGTvoWvZlkPGgmi3rPy060UuiZNll66GeQoqHnGdP2R5yNTqvpqzvC9hW/1WSrJSSZPC1S4WQ9ZNzD6SpV1MZf2esVGefYEugTl7u5nqfUFkUl9Z0+PMJXYC67NfNJZVNGcxEhCh270fG5mL9XCfUc2+rrhkZAWxeXunUsqarBaYIsgKgo6Tf2Ie5tNviga+OVZbpzH9kDL0ieMLrss9Jy5N/cJ8m2sByycyXsvQWcAD32hrKztN08HkhcDqgsvc022aYs7MgMikvrJez5q5LxFZ6URbYWsXiyDr2vTIyVs8MoaACN9HR7VN7+7X6AYNF/u07cf0pr/PhrmyeOv3jI0NOa8T3gjPToxqDzaoNLqhixf7tB1HT5sm7ofZ5upxv7mtqvsf7IuwSkLW6ENbe7WgC1riz7zjN30r7G8qvKwAQ8/fzGvGEEQDNzoaBximvvJ20UfX2t4bnuK6qPhlpRNtgtYuxh5aftfNmZsr9hqsPEGE3aNtXV/ladovA0CE7gy0nxmf494DSuSy0qVAFU2me4LtGAWeP7hyWN6JcvaFJSorSZJxPPD9La6ORSA2MPc/Z/jNMopaVqq6R1rV4wgKVbtI258oxmOjdGV9TRGvrPSCMFnr2ANhOqw4vuC6fLReKkEQfulGKGuBEamsdJ0KUnvWmWudCiCWH7kdlkHN21slsKx1GEm27yLIN51OVaVsHQV3EdwJopSVrlORyFW6q+Pozhm3mUcNhiFd12F1TXJBbOLFZwvBjP1ZJcpW0wxrdoYkyTg+P6FLLhlH4P6sO0KEsqZtaSH467cm5p0jmHe+poMBlUY3aDCMubDU9n7FZzcaLvYdb8rYZZsqtIA7X/NDdLJuYvZPsz5ygV7sywp4fqdAWmEohmoUPI6C3ynAgehkhfx6gbJCRAOUFSIaoKwQ0QBlhYgGKGt+2PHOORBuoKyCs8udcyCcQFmFZfc750A4gbIKSE4750A4gbIKR24750A4KU1ZU4v36No9ev8FhHVNfS7kuHMOhJvSlJUkE2XU9P42APdZ2/fvYjNk3uS4cw6Em9KVlUxs1KpsvTxu63pHyKUvmeS6cw6Em5KWlUzWE8rabz7O67bdOe6cA+FBqcua+DLisgNbO+DliZx2zoHwoaRlBc/91q669mv3H93uV8nzvANmLjvnQHhRwrJuBB2n9tC7CdGbC+Xv+wVIktz1zjkQnpSmrMnUVWLRKb1FY77XlO5i5xwIX0pTVkhJAmWFiAYoK0Q0QFkhogHKChENUFaIaICyQkQDlBUiGqCsENHwfxYxALOLLrPmAAAAAElFTkSuQmCC" alt="" />
Xc是最大团的所有结点。
一个potential function,是最大团的一个函数。
换一种理解方式,定义将potential function表示成指数函数
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAS4AAAA6CAIAAACBEiMtAAAPdklEQVR4nO2c7U8bV77H+z/MkRjJrywhIcsCKbkJDy9o0AZLbFAt4U0TBCJYQBvxkFSGRsFJFUOUmOjWoMpEDShZu10LbZzdjrK7zlWdXNx78W6dyK6w1TrFrGBvnPUIDITAEAwec+a+GGP8MGM7xk9pz0fnlcf2mTnz+55zfg8z7zEIBKIIeK/QJ4BAIBgGSRGBKBKQFBGIogBJEYEoCpAUEYiiAEkRgSgKkBQRiKIASRGBKAp4pPjee6ihhlpOGpIiaqgVRUNSRA21omgZShGBQGQFJEUEoihAUkQgigIkRQSiKHjHpbhDTt/qGn1G5aWzPS9xse8PbiqUl97eCYLr8zNG7Q2VWqP9yuoNwkKfTzSQJp8Md43bqb08dJbKNgJeG6GfGL2pGjNYPOs010DlS4r0skn71Xwg7e+nww45rZb1EV7OC8sJIcp5p7Xra6RGhmEYZoecvikp/3jSvkRn/b+Dc8aBLrn8TL0IBxgAovpmeSzt0uoSADAASj4yencTfg9p8smQ7BLhza7JJSEd24D0K8dEy7Ga/r9yGG2+pLhqHRm3bmZxfoIB992mI0rzcvbNICnbC4aPT1z5b39RLQAF4Y1NfUR4QjubqIPssWIZrAaYgLMXGHhpHT2DY826xCk+4JpokgyYffm9S+nYBtx1jZ/AGjSOzfgjeZLi7uztzx4tZ3FgAq6Jppou4kUBFLFt19TW5f02Fx8kIcdEcsKbwy725g2/KwNYvdq2znkcrk0rj39m2Yib4in3RIuwiyjAHUrHNvjGLT9S3Fu4Pzg1n701Megj+gS1Y47tgsihsL0XDbmXIlw29Qr4tqAMwzDM3pzu7OdP38TcCOgjugSNGsfr3J0YP2nYRkGlSC+bNLdd2YutBH+caBA1TPwYzNo/vh1wzdwvPNpr+nUvjDmXInxju3UUA+D9cdcuz0jvzem6v46d47fcEx+Chkl3gWJIqW2joFLMrqPI7rZlE+7tLP1hBiyZFccEBdkCFQ85lyLl0koBBoSDlo2DDyG9tPCvSGgk0fHZndW+X1o38VPhAmupbKOQUsyyo7jtnpCB0mHrVgF1EPQau4DgknntVxxKzbUU4aKxVQQwUatxMepO7yxMjT2I7Fdp0uUiowN3IfdEHVarsq7l6qxSk8o28iLFHdJmnNBN6UaGx2f+HRmgaEcR+v8x3vGBbPT7VxnrCP7TICsFcoKM/Zh2aEQYwKuk7eEIeORqKYemHmDi+rOt0iohwHoI8vBBV7hjGykrzC2HtH+WGO1rONl6WX3j8tmGhp4vTJ7XkGEYZsulbQQY2G94pdYZYhjGb+opif7whxXraFOVEGAAYCL5/WeOqaEW6el2eZu0SlR99pre5ktrgHItxQ3LoBAATKqNdm2Cz3XnJ3j3q8zOouEcxy2mHRoRACXV0vb25pNigIGI/dAOjQjDRSfPtEur8excTirbyL0UQ5t23a1HL2hmb8NyVShQmMJphmhHEQYXjF1iHAivJkS90mbLqioFIo0jzlxgYH2JJL32yRYBABgu7tA7X7G+5F6AfKyqEUlUf7bPe0lylcpKHpIk5FipzPDP/C7NMOC531sjlgw9IcNXQc3p5ALxeb379f6Z7JDTNyUlIMpf2tuwXBWWNCqNs/79a4fU4mO1FGB4mfj0FeJniv2Y9n0/2irAKjv1LirlheVWiqwbAsCBIUGa+j/b5Pk6te0N76/WrKpafuOwTbSIAQaA+LzOuRr+04D3sUqCS4a+sXu85NIKlY3cWHLbyLkUg8/1lwyeIGSY1w5NY9QIrj8d+zLKUQx4CYWYwxHfWXE/MagvyqQfnh+8qVFfkss/09t8Qcql77hgWNyJvRLhKd0cj5T3DTFiT/TL6SFpRZdxIZkfn3bvETYsg0KOmx7LtntCFrVMpdOS+sDbP2gbSoHwcszmZ9uuqRXgvzMsREYErjvHm3Gssss4H2QYhn5hGugcnlmKvX6aJHoAJoyPfgU9hlYxwCRD1uSpUzamErtkZZOdBUM7Ht7mhJP6zSfFAEseLfMSchH4rY4nWA9p8smQpBRguLiDzcWzVQp9xoUkcQdIr7gfG259IpM2nR9Ua25eln+k1NvI4Lpbf6GNU2/JbWN3Vvu+8GjihJItKUIvcePBImRTPeW4oMcUdg4THEXoNZ7rM8V8Qv38cOhMtfTqlCOqboP2zYy01VSJwH+MOnYOvh1yaSuTT8bwtVt/XowBgNUrv3XNTsqPdiSrgXir3g+gHRoRwLtNft7zyDr0skkhwIBAYY7d+rB58HMxU0Zw3thVCUqax52+BeOnXTp3QhaclWLiSIbWzJeFGIjRdjwhasGkkpxIa/HMDOgz9RyNT+5Dn6mnLZn4Q07tcTzReYn+BuX+ulOMA0xQo3w0N3u35Uj0hiLxNF57Hl5vqjqtnLL7DzZTO+SMprmmUsSZqWdS2gbtnxmRCM6M2mKrlLIdtgmtWa5VYCeUlrDWoPeba7EZxb15g8IQ+YSdqMrEnGrZnFGV47EBNHZzn2pfBJdmhj/AMQAwgEs+t73i0+Fb9x57HiDpXc86rOSAQKr4T000aoVUBLBGrWsr6suQ9pn6y3H8eI1kwOTj2JPzSZGBiwYZBgDWZfQmZou2Fsx3h7pPiU9evu9a5d8RrFhV9WlvBOpV1pX4P3hjUx/BE5L7K5brt6OyiKGt1bVA9JWldVNo/8yIJFw0Jx2xrfDqkH45PfQBLubU6qpVVcfrZ6U+jRC1aLnTLW1SfK7709Nw7W6WpchOZkdu7Y9XYkYx6Hs4etcdNhq4+Wy0oRTUDFn8nLfVS8grW4z/ih/tdFyU4HOdrAxgAIgVfIWIGfQeex55lqKXkIsAlnJXHIFdRfGK/reTIkMScgwArF7j4Fx/IE29sBuvNtRe1OWi+pRhuBxF9uPVHx47DwJ+27OTN/6LfGspMgzzxqNrwzEAsOpeYpH7EuCafVSGY/VXLCTnpogkekCL0ctpHKlOA1I/PVA2SxX3LG7yIHKRZSluzqjKBRWqmf1lO85RjBu+Daf2NI4d6zP9m2dmWjIr5HG+09687lRqKdL+mRFJeYP0N6X8C2MmvUf14NCIQKnKusV9OBeEA6Rl6qdczmsCAbeuq/fGtWZBxGmMIbNVMcIbj64NFw+YyFzUWex6jR/hGDhwczgIkqabw5bY43tzut8KU0oR+r8bltR8ID2B8y6McNt5u6EECPv4TiC0Zh6s58teJrcNuGxRnhC0TsUHL7Irxb153anomEq8o0i59V882HeRoY/oEoCoJTSRELW0HO+N+E09JclXhhDl/rrziHzyp/Wgz9RfjgMMF3dMeWK2Mpn2HoEk5JFsAS/ZDdvAbcdYLQa4whK03/a377xRCoVr9rH+4emX9IHTuM4VtkmUYtgjTeorMkxYsRU9Jl+yL2XIqlVVB7Cy0wbeYkm4+WzsIhsmjMZn6q5IbhyQcuk76lsmnVTwham/FmAAiHsMntj1H74guiqS1L4yDAOp5SW+AERy21gzKwRlHLutLK+KsdX6sY7iDmm596U1EscLrZkvCeJrKdIg5NQe53fhGEh7id5y6dD0S5phGCZE/XSvRQAAVhqVADhE7/vszetO5coQ+YFeU181wGRaV2y0YNuuaRyyHIRVd3ymqx+OPtuEDMNAmvxWWSNI2IezUixt0v0cY7fsxj65E8WSu2TG7qz2fUF8RjEauDQz3H7BlLg93HJpG5OlyuhFoqcuYgmQck62iAEGcMnNaTJqIlszKwQg45RbCtvIV7UNGx2+MOXZgFGOIqQWLLrJP8W4v2zmnWt6SMGSWXEsYWWANLVKkl6P7Y9KiahG9ZgM7B+mV506NqBa2al76iXJpfUAzLx3lr0Ny1VhIYrvIOXSd1TikmHTwmY4MEbNm4YuXo/kKuglh+FSfUm0p0eTRC+O4eLuP3oOJnJWinhZzYW7EZePXrKPnxOUNAz8dSH1vjNXUoRBj15WAkD5da5iyeD6gtXQ34CXX7NwlLOwM2zCY1M0tUKSXs8/7isb8Zrhx2SkWDv4yqnvFLP7Jp193zjYchFeVzAFqWwjj4VvwfX5GeOdG4PKocGW1sF7X02Of6l76DjQRhjW80lyL7fcE9f0HE8b0yTRi5f0xlZUhLNk1dJmaZUwJuQQDkKI68+eYystRBoHnXnvLJsOTQNvniPX0L6n+mvNVcfqz7bL209LW4b20zA+U3fFwV73uNYVYphw+idqD1zyickfOtig3v/eNnmls3tQrf60uaau+Zr+u8XNtK4q61Lc/tEw8JFc3iZlK4FKqiMpxX32D2FlMt1zzskCkkRnibiTiBURScgxgFdJz0mr8Zi4FxsJw0Unz8jP1oswwB4Ljxivzwl33fd69HyZ7VS2UYAa1BSlp+zkwVuUANemr5z7KsEZYJiwm1c9aEmIgL8FmffOMGx4oKxWYy9gQfqh4Y+gpkkenlfMAPiC6KrI2O8Iw9bcyQyL3MaxbLmi0Hl4an5S2kb+pQi9f77MO3MwDBOuHcFleg6Lp73mK32j9jVuKcBli/KEsN/Mczg9Mu6dDbWXtPHejHeDX6gU2cx2XEHSW7Ph1J7GuW/xDmm+3hb2wxNJwzbyLkV62aS+xR+AYhhmv6KyVj7+9+iACrVoudM/MBZVUJ74w6BHLxMcUgyZ9g6XLcq6CuX0oSaCwvNLlSIbeTrGt4NNl8DP93t+UyH/0hYVzoHUguXOYN/Y/5B8Zczp2Ebepbj+dERtSv3iGfY5A0XTyUb54E3N5ypFR69y/C9Of8rM2YZT++HRgW8P9+xVBr3DgPtuU3mO8mn5hH2I4RAV7XxB+cIDt523Gw7/3iN62Ul8oWiSSOSX1ZpbKsXHPcrbD51J/jQt24BeYwtnfDVXUoSLD24QGQWg0ibw3NBxhqcYInedunWtzQml1e8WIb/pEzwmmZlRVgZ6TX3VHKnqooDyGPoa8vw2sLRsI/DC2CPgLI3I02umcgP0/++t1v5k5bzZhX45Pdw78M1c3l7oV9xA2m+fUp6RdN+Zji7gKhLgknXk497cFazHkdo2aIp0W37/qbTpswecFvtOS5FhGEjNPXr0Y75eSfz3b9J8rPZXBE2R806r+eHDp0X2SmKGga89jx678vRK4uS2EfDaHj00W53z/gDfIL3rUkQgfiEgKSIQRQGSIgJRFCApIhBFAZIiAlEUHFaKqKGGWnYbkiJqqBVFQ1JEDbWiaEiKqKFWFO3tpIhAIPILkiICURQgKSIQRQGSIgJRFCApIhBFAZIiAlEUICkiEEXB/wMNn4LX5mgEtwAAAABJRU5ErkJggg==" alt="" />
这样p(x)就可以表示成一系列E(Xc)的和的指数形式。
E(Xc)叫做能力函数,转化之后,可以将图理解为一个能力的集合,他的值等于各个最大团的能量的和。
优缺点:
无向图模型中势函数设计不受概率分布约束,设计灵活,但全局归一代价高。
有向图模型无需全局归一、训练相对高效
实验:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAApQAAAHfCAIAAABh2t9ZAAAgAElEQVR4nOx9ybEkvc1tGqWtDNLityCtkAMyQxGfHdrJkVzqLSqaDxfDIQCOWZc3EB3VWRww8pAgk3X97/ydv/N3/s7f+Tt/r/q7VjNw/s7f+Tt/5+/8nb/Y3wHv83f+zt/5O3/n72V/B7zP3/k7f+fv/J2/l/39AO/nP/936NChV1CX+P80df/j358Pf/3rn5//lg+sU/r8U0yW+Tz5fPUpXyrSD+W/tDxrRLZsscR4U/tKkNoClUvtsTyxpJBsM82rPBS1W/Je1/83KFAU+0r2yLrAalFl/Otf/yzMgHbUulHTWHIBwS0NsAJM4ZZisUKwM4B2GB3wPnToS+iAt9ryAe+qog54H/A+dOjQMuoI3n7CAxAdr1vG5S7t0Eaq4tDCod6tAiG2AavyK7VlVswju8qzpYc0qXML+l/VBF0YAF1Hy1s6l89LRbUF4BVVhzngfejQl1AX8HauTemyWF1qWwtrD8nVDF2b0pbVNavFFWVefW4N6EBSayEORGP6wYJL8a2uVSbxklpNk6hCqYyp6mI2AgrBD52qfuxVckvepUhRBFednCYkWLoonaKwzCczMQe8v5mu63/fR8u1ui11Ae/HXmiqCwu/K3Yp1quddOF0+9X1cbXNagufhbKMl/KZFVDLW0E3KJwlD+xJ1C7MS1X9AAU+tp9bccFsBNr3iANCjDV1wHs9LYHAQyOoJTPcTr3A+4nkeKMi0+XRpY1l1ripFs6x5CxQDAq69vdFs8EXgSj64dFGA1myEGPS459qC06SzHtaKExarVULVKVQCxcHC4kW4sGZhy9fgTKArFoHvHUqCRMn+QPg0O+h4h5znLYLeKtpz0ckJ6uHg5wpSoptWFHO1CvL2KtJSDWhSsP573/7bzreP3X9z6XPeB7SJ3//23+rrX0+lJLlv7Sdj+CYE/ZtKf/5UCCtKhF4rorDeHM2xaSzvrVaZuqSgrOKLN5veDyzGiA0dS+dWY33bwbvg7KHFtJo9+4C3rLZHOdyxRltuX3SYy0QH2OVdkHEkrXY80esIGmV3OATbcFiMkSgI6cUuJjKZDqln1ZpNWPfoupq4v3SluMXjAj27ZeA9yAzHzrUl4auwjuC9+XYf8VlmKTVBmU4h+L9MVKvIZItd28QP7d8BjPjTCN7OInm1f36aQdjNQ1eXCvRhd/c6WmTM94vAuSeKp/yHcCbJZSq5f0ZaZAnOXTovXQbh40bqRd4q7lo+q8a7+pZ6PvPm98ewoNpScmyVG2h5z//Vx0xaCJUzTzLvLGFnTR9ypqy0uaqRJhVT3rc/1zNA3uoCGW14Bmri86Bfjy2oxou/gAU5dmwUHcBLAWCJIGqqFu7JsF/eN4f717wDtn+0KFDkvYEb0+8s/HrIWeqr8jKkpZ0jrB+6pJ6xbL0WlA62Qipq68eegnlyRM04ou1c0EL5MyKsyBVKazIkhNl+V/5IQzeZ9v40KGOtDl44zxqdZBVC8jZQPmvNdR6uugIAH2nEU5O/Ju+uOTylRW2plMP1Q3p6m5Cwgp+EyS0Uf4bIjYRoZAfA++D3Aly5gytROKh/UkaLuohXdjoAt7sutPiwJ98oDxeWz57DirTcbkoCpzpZS3LNGbhTe2L5VcBY5ZQaptqYZYmLd2VXYPq9kH12hZ23li9J4f2xao/jlStdTGqenVrqIWPLQAPjyNRjIWyqgNucUegGHsfwZNOLx9k4zfZlmIJdnBLbgy8xyHcW+gA6iE/hVyrvbsu4G2JMGJRElKO9d9H5JNlMQrhqlAy0fq0XUqjVsRWTlRp9BzWo7Opi+ROenWdKFB4oCWpNWUL8okUgT4BPFC4pV2r7toS74CHA96vOVF/6L00xw+7g7d/JJKyVMswHKXPcTvVeQMu8MB9RPpf1SiDpu+XPVHwQI6HN1nL32OVeeurO/tWAsNFoK6qNaPyqgyzhxK86XNPCIQ0rFIMvCdPt63I9FC7ag4d6kifTCZw7L//7b+NXfQF75L7VWOw5AnLKkfNqzMBr9qhYtkpjWga4HIowMqprqISDxlaVHOtxRMAJzRBioWSt3aov/xmAYwFP2ph8DtjYIFLP6jZYKwHVtJK3VcvFPJYMEFq6p59a0VBiXd5Cbz/FHoMvFVuulBag4cOvYiq09+WxvuC94csJim4RiNdFRN8FQXm0IhMe8T691gnYUH/ErOqqHbCC+Vqp41cXT/zIkw/l7Yoxy1gfhL7FKxktXDfeGflw+DduPhuMe2hQ99BLwJvNd6lCOUJK/90yjMzzeCW1fVWblpgEc6XOqWoPncW8E9uLD14ZjBV/3SaW52syJYlq9WWq1ND9m1iXV6dNwDVyQB5iNskXDEM3n6yYL6lzUOHvoOs7HEL1PUCbzUjah0zLkTjnY1QtIVS2PObiepXf/3rn2wYqZ6F9hNOWZdUs+cnL9Wv6H/vP8ewWZtUipscHbfaV69w92i4+vuVQEu0IsvAhxIhWLqQyQCpXeBT6DgrzophVd/ktvwSF2UXyeLTarlo7ID3oUNrqPviuxd4P46zP5K6x3tjVpNWYcu49pY9avEsZ0N9ycU9WLlGucXaGJE+KS3n/ITaNJHjkT2qq/8q/6Ee1dyVX1eMDngfOrSGdgZvi/ASUA5MveI9lDb3tLAJRXMtODdbXfviWUv54GRJNYrFZHU6iDvNgZzfT1pmWp7yYLvZ2b7cRzjgfejQMuobIyPAu/oLhrSAKgtLsaqHh0sBNsTTU8dyCFZz19HTbbiAdXGKp0Coo1scmGf6Aa0B07CK1Wx/1UasrmfvQy3pP2VdVeBNXkZ4/vN/H5f7FLiM3xFQD4ff5CId1YiJ9IPUpLpf9pAEu9qRjIL7H/8+4H3o0ErquP4eAd6FPFCkChLaAc1RdTEXXYmWVQ44T8TMZOWZ5YIp6huAyaiNcF8JDTNmcCIBZ6pbFOWUwi9UdLFeylcZoKmph4S/VVc+LH0d8D50aCV1DJOO4O3PbdJh69LeHCvf4mNNnr4kgVEvVCW0ta82aD2XFZ19Nc5yrJz2aIpi8LjJHG25ZWqSqAK6KwFyi/cy/F18yg8EbyuNNsJahw69lCzwTmQRe4F3yTRK+ME3Y9AYp//SFiwllA9qGc9kAi/x1Rb892xXjxNX9xcsEaInmXFOXp1dlYee0/hWmp0xY03jZBc4de88K37/vLBdcuuZG92O+3ycfmJJUb0c/tbuPrq13wy12CtNDQTvx0gJHvA+dIhSrzDpBd5ybWotcNlzIEgpg5O94xZtapITlKFC+RvHSy6/HkIkF7ueiQtOYkdV13FzxMltO45YeN/eV9UfBmXaDngfOjSVtgLvsgJg6xu55JJrU8o//ZUtVoz+N7QMun/eHvqIZY3VCFgmqss4a+GoFrCefMpbt97K03lOzp26sjq1vlJnFeo621qbguW1fKJy4sEwIGZ18SoLqMZV1X6RY2WW1KpcOExKdgo3pQp1wPvQofWkRkq0kS7g3SjFTY56TYt3Tza+Ua7n53KqulZTW2gUx2onDfBd1NIockf3wOmH3Or2ge/gyZZlFkTtmmakqHeFmDzgfejQetoKvKO9e9LmQ8mzU1jlH4uc6EJt0JOSVXe1G1elVduFpOiiKI/a04jbyKpzluPxK7WKP95BFwe8Dx1aT1uBNyUrWtWEqifeq8nA8tyTmsZaUt9XfrJXcuK0MBBQzc069QzEtw5Jydx+y32xrGVnU+CtZXxoTuqh2mPudX9AxamkAkE4hPLnl/bzelFjjQXvR4vnaeDdMg4eOjSZ9gTvKskFYllROaXolfSuqi6hUouHxiNgWIREg2WroioOa4FmTZh0/r0ANqonMsDOjqomkMx06S7UIBCcGZe6qzNPQ+lrwbt9KDx0aCbtA94tQcqQWxVExScwYlaTk7f2ul27OcC3Tnh7xHrLU7I6UWDteBLsToWUZas1G7B4izqMp7wTBdXGQ3ivNtgIVWx3QO2RzXSjqvhO8LZeMS9qZWT9xNN1/a/8GszteEfw0KE0AY91UhfwTryGW0rSQ2olpqwGaXa35MkpKMr0r8VS6ZoGMjs8XI71Ft4ok4VzGe9qyFtXluJRwtoOUAvIzHM0gezpiLYM8u3yHQTJ0iXOY2Psl2t9zDZr2f+OPhCcOYn/7e1ov7JY+VUxEO+3dn/ApPe8n0Xgrc7Eu9NoKQ79KtoEvLtLUV3uJNam8rknWi+RFaAVVf5lAbn0vOA62COXWmzmOgEstUOGoPx71FKeq35SVVrjIIwxnrrEI46FA2ZwMVr+Im9ndIn3A94xOmvxQ11oE/DGWFsF2oQUIBPr0YCEZBytl5ZmD8G/Rwq/vAnyb8AzRKmqkTXo1z/mkKKUxTMwdyIWVN4AD7hkSPN+IzLXOuDN9TKHrKsYDh1yUvvGbRfw/jRl3V4ieaYfqAglNa3mUWXjOBHqUd1jjDZsX8zaJqPM3+QOS5mQrw5iJb1czQaHlMyI5lGt3H75AHhWuaV2kW3KS2FBs5jKRbxqRx+6REIeaEkm/8tzT0KeNoKPxKvOXO2RblUwBClKoIEPVP2F4D0ZtltG20OHClkzTn8LHcH7SZ2dvowlrFoSt/M4jheVkU7tMRSzVq1qO3hb9yETCyBIetyIVqyOvSpge+zOPuCOrp/LX+okoC8JbCExrYrVHgfRiHh/N3ivRe7R0h36YtoKvKPDNy3JmG/PNGIUzwF2uiIzkwelsPZk8tZC0Oo+QpUZJ3hjcXrZ7hEo3tIUYNJaIvth27KRX8Ny5mHFO52SYj4XgHfCA5wEDo0f/D60OW0C3s5rTNivJJXnagxittW+bvI7S9YxY9mXeoLXg8EJFL/IDrpl0JD15U0yTA9WF1ZC3n9/ePQ0dTojLUHRSto7k+T+MnKLRyb2rePlVvZbHtcH59UZAyVPTl1XtskEoZ+/B7wTKDu0/REyHvpi2gS8CzOSPb8Ujziji6uUz2ph2XUVaNVvZQtS+ey/llFUII8qSn1OecAlQ8lhWiWxvLZS1iwZQE3fTtefNW7f4RTMt6xOq+Wd1ilVgGvRNuUHSr8OvF/U0aHfRvuAd+Gnmh4swxxL91VFaElQOWPQM2+QZSTM4zkBnhm0r8v90wJngejoJN0AsMSmYvPT5glKzw/AvNOjBxXCnxpmF/pd4N3X/Lf2s+qFet0nfKg73T+v7FjOT6EdwFv9bUePlsqx4Q/R3LVqAlaxPLcSrTTbyXTFDpOXD5Lt6pHvUkxmpHPxLk9N+xV7k5tDQEl5lYr6/BE7FNaV3dZGhpU2B5r0k8Ub7VpNIFdvs8EuYSkK28UvF2WJTnMf4sP3z0uNql7x+XDAe1TXW6HCoULTHHI+b13A+9NUKE9I+QQiWKs33DgooAI27TQRg1aKni2knPF+1dLIHvuGpMANVtMA0c2RqGKvn2tK1ZdCzFfLexyy41iN22TcMv9pj/cD3n26PuC9J70OvP2O1AW88bhspUlV8Kb/Ld/KpnKR0hLvoEcLvD1dlxY6iikrSn5w7hoo0N91deLlmZnRr6wCeBoU6qsK3u22cKoUPKcTzfZ4fyt4W32NBlTraOsB7w1p8qyuC3uTwfvTVOhWZ5qNlPyX+4vUA+qezLaVDWZakp+tNC+4gqaa/aZ7LqqZrOP6+CTzJZaDDwR+nP61iuX28oCNcI73JmenrQblMWxWTBrLf4W7dEVmLMsVrbtopDiW+OCtDTqXLSxR3jwhf//j318F3rfjaGj3Tqd1dKiRgHsc8MYh72ejXbfVhabHoLjrFnOrke6J9xHMqF2369yTmVD7xcZy6sFKXSQalJO5C949ELVRu+1CTsvU+1XgbXU3qOvJs4RDjXTAOw3eFrdMvVSE++f2M6jYblBgWas7iweg7dFjixO0QEm/q+SMcmnpAWfXbHslxyTu0ZpPUE9QY4r+16mZLhsTcmJBZxhV+jbwfv5kQqx47tUFvghiqICHcrS/vVSnnQze1u0rIL1JC2D1XuRUdvT3Fh8DpWS801/8tLiVQuF+5Y+HstmJdeQbcG7xIA9LlwQya9Aa6EOTUYBk1StWqrsMeLMAOJLKJP1XaoNVZEEUjffSV4sy5VcsAy/vzK92V1T3heA9tOslmflDXegV9loO3p+mqmuRaq6SLneAsOxzyBwywZ42rlMcCgNMDyCfnCOA97Iv5iojMklULsDS/CSW9FWaBHrE+nsaM1Jv8ivVwZxNHfBubTA91B6aSa9AbpXPbdPmTiX791OrjcvP7GEZu7GVnTwwqKZdPAZeJvryKySkOsZJd1dXzWH15VSLk0lPsUukRjzx3mjEhJLZpBA0Inn4ZvBWe080Uk2SH+Ten95ir+XgTc/ZfugmV4U8jrdl2Lj597/9V+I3TmVXJbWqlx6vn3uHzrtZyvMPzzIV7zENTeHKFHR54tk1AO3T/7bfB6Veqy57LH1Zd33jDLyakA9dzK4mzJli6bKbQSNwPNVYgFt5MwxmlYVPYZtu8ahOZb188UwAbzXP3N6skxq79gD2fKEOJeiAt/Pv01R6vViN91CkqIXVvCJdXd3aWTlPv3hezj4Msv4DISGqq+60w+of+F75QB0gEUrWLCRqlOqKvAoloMcD3grD/qV28YlzGerOZJ1UWM6YpBY+O4I3mO8/9pbnJxCq/LNFCW2N4RYYuazljto1e2H3/vljVmWpff1ZnMm3b0sBFu/4eJpKeKl9i3ej5TqYvYXs7AgPUzRhYK162wc6al+8DmbucdXWzdINpCsWjX1OMubOTmKfrLbAvF16Go0XtcHfu/LGvfsBe2cAOMTogHcUvC3eLNjGqpblL21NllhxsvYLuLLeSwqddcGKSbb9hmATjkRSh3LlFz/taSElS1VbbKiClwLWTC4qF+6xOlY7E0tWsRYprHih2X4Pb88Bb8DkQe6vobVOGKKdwRuzTcc7J/8qrrMGrcJAe7fj7I8s2RjvLVswCW/0Q5EHcWVTwDRO8dmkKqcoxgadgWFmqNVucvrhIXORxz0j8estakSPm1lPfil4l+MVCcDukj46NJPUTZDlXKm0HLzxm7syVavePHrZvypWfbUa5OfZaSnJ6qdTloqkTTHFWsfQ2M+UgXgvI4n/zs7qu9F+hUii2W/ZgtVU9XxWlapHAqv6wW+ES53TXlhGvQo61ulL1d9o4xZvll2qmqTTi+KTVoPs4W8E7xaaxvmhjnRW3v6/ojGpQ6eqn58v6nhyj5dvRWVVx4amalQ/O+MdGAJ8pS77/NVDZC1//YqVyVv2ATSFpWCO0UVeVUzL0FhRvRSe4ByzCuiA94Ht7yfphMtZsmgT8G5XNR2sQ+J7urBK+lEZk5x54LSwxST4Kophy522kYGWxLv8gFug8U5r5fbXPZoBk108dZORzrgFPH85eKc3swvJt1QPvZFKLnTzLY+WDH8X8LZ+DcmZ7k7Ee/VNX1lA5Y1thPljnyUtPWJavFlpWHUSoH6+xUFr+UoxTrCDyY2q59BzyZslESsfetUeV5TvTMvqxay50Vt1udDQ4SxZbhRgrit1K1s+4O0N72k8H/rN1BIvXcC7sGGxR/ksz2mMXNryV23hgQtoj65Y4Vs7qYSfRONdXVEtJ8lMI3uXWC+GjOLZK0kIxUzwEMdjhVWXG6d51gVgRspCY0TGO2B+DXhP8/te4D15znHo19JW4C27rg7KdNPUAu8QDCS0V416wCT776BEqxSzqqLyhEJpF8z2W1nW8kzyWjTWrupoC6pcfoVEe8zh47Uwbf5S8L5OFv3QYNoEvAt5UtaSefWQAUiP3z9PC7OpgCyvtvOITQd81ZKK9OycuYx3vH0AJjefO0P8FcEdLPiQMwCe6sF1kKqVzd6RX9wCd/JUzaoWcJ70Zi2oHsWKFbms1HcpHN0LkOyVy3/oKxJYgYUOeCfpQPihEbQbeFPGPh8wPy38g2Xu5VvWVNPmjCtPmDvjvSwxnSWLONFd51BJqi5VdUCf6lfVJemggZExEx2Bc4jD8gfVktVeZAHmolUN0xYOeDfRHCkO/R7aFrwLe+BbgJe99EObkmNrCLyXxHvhCujWo2RZ0cPeuCVHeqphsR1lFYjfLrV/ZpZo2XKz6jzpl4I3K6aeVnVS4uhytaNQPqqdqgeJ11IxDaXlXI0TNh0vXcCbnaYuXDmvFim5aHoZOOOf5SQ/H0ooWd7IcpVWGao0emM54xnEO30oE+84/UvZu//csF0dVZhLR4cU9dUAqWFqSrW8/K+KH2oAeu51URPv1nN6DJv2mIh9nNymzpm42xykiwCrVJMsbc7c1Rru7n/8+4C3SSEI97M0qNk0sUFkjl06amk5q31pOXg/jpO6gB8G2C1mci7Remmviq9qg9WQkarwODPg2akHj6SJeFfhNmRNy6P88d5lmJJqdJq1ccyR2J8e2Q54123sIac/+X10jqKkfubYpaN+cmPQtrQDeDN+qHUw55L/h6CX1bKV9c0hBNYenovk8AOo5SIn28sHZ7z7U7VylmNVseLds5oEXatNWWphqqNRnFB+Ecp6UpxQ9TRZEQibGGqAk6vx0hjvXwXejxEtvaTwQ0giIT9aV1bOcJppeulnskct0YOnbl/wdnoCy2az32Es4oAWqkndx04eMjY+vVu5bjlSWz8KSa0APluqkHqgVNhjtpa6uuHFICChKtVi+RUrrG6aqE9UBVrcsue32LC4f+6z3OJ6+evnJghWPubZ+kr1TFZeSkEL4ImLmntgHlUEr6r6OeDd3pSz5Q1haR8UbFEOGEzfSPuAN7MOe4L5lzYd5zkqt1bv1SUpawpgXinP3A+vqKympJ7l4t5KUUhV+FPTVfWqZfyJRtxsaAxkOzJyBS+X4OOIWs0q8BiArTpeIuQPePcRB7fs99Ectwm5WrrrS+1r7hK6kzmfqQ1P3S7gXVUjZoYuniZ7lOxUMsCGVJX/5+eYK93ssjMKVxCTLFuDkYT9C6RgFXPxrsrYEmvOePcUs4R1qkVuN7APEnqrYKz2KD0Q2EVOQSRjH/ql4N1yu7XM+VCSr9jjmyKun9mSqK5UTtJGKfxUxWfUos/Gkc7J9ltoOXhj3spn60Cy5cZP6qWGaracMUPdiU4jqr8yqcpIefDE+02OSTMeWBXWJk0LswWl1PklEu8W58CpWO9YP55492tYeghQF5sqsYdA6pCnWU35G8kppLiBKng1Xn4peLcP9P50B8CbXIPt0gGWcI+5Wi2cSKE69r4h7Qze1Goq507+sTjVZXGVNxUVZL/Wc49dQNbUEl8u+xiTVoOyfcmMUyc0YaCKoy5G+8a79BC1C5n8YBUTvVdVhAvkHDLkV8BhJB3w7twyk85TBiuq6lK9qlSrpyummfF71DR3Gk3Lwbuad8Ff5dz4aU7GPj+znbRT0LVMUYL1HHbUMg9gzy0eJBSpowfm4fGhDiMJh9bkxuqONmW5AXMYBsZSfFZSgncoHKqmt6ysfjUuqxcdgel/D3gPka4I6O+9L3hbcQXKgx7B0VlG1sW8fa2Dk36vJkvVnrpdwPv5ebS1mriWN0iz0VmenmWFWRfqdeKMK6AQj0dJ6azjxIxtJhT9oPZOE7ysqXJRTKle8u2qXHRy8OmU5Z+pVtmZ+fJjuLQwm+JQ8aUTyhaseJfn1an4rMFovBdc90Q9KGAdqrd8W3ogu6leNvXRjNxd+kv8iCrzFhnvVgwe8B7S/hVPN3UHb1rdD9tqjy11c9qb6SG7UVobvcDb0x2FGfpBLub8/DuXO2pqF2sv15SnfSsRrdqOfk4vKGXX1Xi3Ms+WfqrDhZXBliLQNT1uyuMVfYcFxhvQuZVgANzKAlYXWKWgiwPeowR0xkm1HawrHGNpUifLTmq3TncbvYvSWu0F3oUN6Z/yeSmM0+ZrtedZ21misQIWLsqun5/jvh8g1a6xdM7BZ0S8M55l8qD8V9VP+QwqYnODrp3knNulHdLprkwhVfp+8H40d4xmd6Ptg/gBVy44g9lZq4WmgXe1/V8I4WmtdgFvllGkae1b+/nO8oTlgS87DWiRPORcraKWaY93KpTaPjgyzXLalnQlNS2bwvJSoe4/x9TlgPP8OdfNqqhsW4lcWdHK1YPD1Wz6oiqNJWywuVt+iLOxFkt6y2v2AW/W8h3Hy/1zZ4f65C8F78tI43RsPyr4nitvzFUXy3rmHzO9ZTmlNdAFvB8jkcgGILxYkf4Pqqga6KXA5+fyt6pSnBhTDaTKK8PEmmfIilHfsOIRR9bzEzaomCPi3eqCZnRYm1G3cTpniyuOWEuEtEq/+r3grVL66JO/C6sFcCgMcOXv12pZNVA1mMGFix2dhJI8x/StlNZqL/CmdpFeSr+Va9OqV4ATYapjVKWW6x7pzNKXcGSBHy77fEVf5n60tbhceUu2AVe3dh0mE816pZ7lAORIIpfRVryXV8+teP+kNBgoWnorK0g1z8/yBLfvFX+pVbBPgQdSv7+pxYC3qB/ohLI6gVMVOxy8n07rs+4MWH4/ugvgEwmu/P0CNkCPibR8ToH+jr4ewtOK7Q7eqpmi/JelFRjZH8fWoJ8H1Wf8vnT9TDyojDG7qH1Zda00gMUVCEbgLcB5VOykX1WDkSV4Pc4phfKEOf1Q7SLqpaEWpA79/OScVu2dPj/g3QEYqv7tEdwfe9Qh/KKB1oAeol20IGuLCN9EaZEngDfzPT//arHSFGtZlmGdYm1UY1AWYL3L1RtIm1PPl52qqntqkQV4AFKo7Vxi3JcVVfAGrhiKd0sJ0XjvkqexSnriS/qJv251mpjQ7QHvDtgTiig1FenhjR26wRH7kKNGt32pocV/6cv/hveH2l+5rt4m22is/QmbFVBf8L7JObXyhDot652+hH1pJ5uq54ysA2v43Wv6QaZkP8/ZW8UsXQx4UFmyPJ9FUPkgefbAMIt3NUiLY8hgB/FOc/60r0+VixyFk+MY+8pyA8uUUhUy3lkX7LPqe9U8dnqsYD1aP56Gnw6M8ngAACAASURBVKslaXwxqdkwLln6PPx+8A5hT8661TgEHYXYGyRFLw6XWG2aI02jtKR9wdvJqpN/WUwdlTyd4mJXZOFotQm6cMY7SE07xwfwrTpBYfqXNrrIZAXHO+idJcylxvwweZH1NFZdNQoS48BFVr3z6XIMsNWKXw7eoeRMR+mq4TeO+hpoggLbbTfHl6ZRWswR4J1YsuQMdLlTKWW4V7+yAvAhuD4o3sG3CZJrXwy6fg1j75LPgchOkwE+waaANBkWmW5teFyokfNQO5a80kuLvLQ8ZaO08KvBm+YuogSOWw8KZmfA9zJQdFMqp0xcBSQY26XelrBHARoB3tRGWM/yZk1qu142Ym4mV8zSdelD6W9WXlRKV9Kbl4Gs1HZy14AxpqaL6Qe1BVbAygzj6z/VnSkqnUzhql1bylRNI21nfVsdi5y+hLfwikuD1tRkOE7RJy5ttSSt9virwbu7UGrLVezpRS37OhN4a2G+2v4cd5pDaRlHgHeXlbfFP3vYBeBDThJdgVn+TJuyusYLaKsW+4BDBuDi9RMMGqPVzzloXGUe11UVnjZri7+ll0lOj/W09uXgXfWA7m3KZnOun6iY1tIE8G7nf9w8bDdKy9gFvD2L7MIn5p99xrVwL7QRytulTZQtmATMA3k7xrv1LatopcdZgZBRmLAqM0/zUFB4kF1YWXGVvSonIReqqgV4FChJq7TMA7C3gIpfDt746LJ/gubM317Gz+yEQoKlaHKd+unWDnwuoUQ+bbI7zaG0jF3AG+f9PG8TOJkH59VDedGb/OgTvrcEOBjjH/gby2nTc9q3dp+JdbGovCjGur2kKPAiye3nZ6pfTf+qWwA43ql0qgbYuX21wC1uXFHL43gH77lYKQdry4PltIuNEtfxsu0V+ZN6H7Zl46Apa6eg+tNnXw7eIdSs8hxtJMpJVIeNakwLmFbOOJrjTnMoLWMX8MZd0HGKMiz5Z3vApUx1f0T2xZ7gfGnOYdIrTpVbHCZW3lj1AVWHVf+xnkujTAtPa+UtWbJswfaDc2lzqRygLtW3q+EQNZAqNeCt9HXAu7OPJlQR0kYX7XUZqmYqtl3zL6K0jBPAW7Jq8a8evQEtXHCUdHbNOgWaTLsZSMVbUgyKdws5SvmCiyWJ7Tx6wvi87J0ItYWQSkF51rU0hKqQqiN59C8bZ4awJq9+FGctqJMbTF8O3s8smGm/nGQCRRP4LKRV3e6A4q9QfohyIdMFvGXu0bkLDtKAnjW0lfWVBUC+Xe39sg9y09taLgMn2MOSEKbGUqWzlKZKDUKM/ZKVqgGaN6bFKPNgRSt/oMzittziYmkYqA7/tzxhRqFd3D8vn7H4pPcFMc+5fa9OYKuBr+S5dGk7WZ4KW0zA0uY0MD//fj94P4PxO+oEqygn3ej222m5YqcZq1qrC3g/vsUKzkxi/i+xcnLa0R9rrF9PFDudraxiVd6iDgma8rQmNalqACckHrHU9nBo2bdXUIfiXTWNx1uwhqNje+E8VMsylsXkb0mbYx66ONkraLJog7T9Xv13UWC1VhfwZsuFRBrQGoWj7ViaeWqgZSmwsNG+bVS6eFKDtd8NGv1HVYUFveVfaX01jaz2WFWg86FaoJdWW1ZczPcuA1mj1rScjZmANvJbwPvpd6yapW52pnSefLSBWnIhJXu2XL3jKGeRLuCtHsR9RLqPmhIz/wm6xzg3S9PCoGtVXnrAm3ICDp9bKVlWQN5MzlK1Hv2EXBTU9W8fPDCy1K2B8l+ZTwajnPpzpUBwZgv/UHyTN02cfUnm2bF8YIXQqK6OQtbd5lUe5FaOKuOvS5uret8Nz7pTGh2nCRvi57vR2qOZaq0u4E15CDFsMQ+SmVft2DDoBRDtsXTBNHn5Fnwq2zm1sKbU9DvltovPWKFU9S6LAcp8iEmWuq+OwO3xzloYOqYxk+G+VG0z/VhS0CfDwdsy0jg9dmHv7ZgRxcVtDfQ7aQfwpsywD/KrQiW5R2ES899xkPXso6u8UUQPcZLbFk1UrDZbBivLeUC8d2emgFl0/6XXyKO2w9zDYsnDg1M65757r3j/XeD9leRPSZUE4zHQVrQDeLOsIE45lq+sO0lkWthK/6rPZbL6+nm9icVP9SGjatrT6pF9xdLsUnwrCSy/qrL9ubPFmpTTVXI13q2dC7D+w3z6E9HMuFXZcer+cSTJAZPRXVFnX2C6UHYDi0WqPBzw/jZywnbVRssF+c20FrxD1meLD5DKKsWkOBdZ3PtXgeo6G6+o2IKp3UzpKl1WokWiSyQSZLxLE1S9y0JolfmqNrDy8YmBSztGhztl5T3GGuQYatcyDUCnXLl4P+D9VnJu5MuKx0C70VrwzjH8+VDypZJ5Nu4DiaLuVx1zLcgEwzrmITrDkK05V66ggIXBqttQBtrjXbJK5xAdbUcbDCFry7yqpU3LwTwuysC7GikHvL+HqtlyKw9zDLQbgfUToC7gbd2oTBOqOH9+/UzYltPmVZGtH170pOsZq5RnWrg8ia6xaFMWb2yXodpgVaKyWWDtArDRFW9VFJLF2I8jMEPc2kUxUtXs+fVzY061l7V94LSIqnOM99julpUtq1keq+rntn9BVcZLMR+7j51WP+D9JYRhuzq9PQbaihaCN2sztxx8xErC00I1GRtlhrXgX2HLnK1lJsm8NTm4jNW/X7qqh6g6l8zLRR7l7RJpdsu+Vf34C4QEtz63J71zLaSlozaiUcPEsUx5wPsbqJowx9WPgXajfcD7iW+BM/C2qic2fRNja86T2ZKoi0Hxnq6HGaZkEPVVZqwq0bSEc/s5oXz/tnrCK5hZQxORRkktuRgPxWGAKx7w/gbCc/CEgXod3DiUo4XgLe9edmaDwUlmNd5lclu9zLmQzDqW5+pn2XKVJGyo6eIQtvmvFnHmYNnGhFQ40IPlWsxA4EYRoI2q3liVKAqoZ+Bp7+rV7sD6OKXvtJrHB6plLu1yeLnjw2od8H49pRfcoPoB77W0ELzBYO3xKJaJBYiSINCC7EJGQa9hR7ZzifRA3wiSyzIr3qsypqf446SLkswn089SA1FumSa7uE1141IGjmzhOivvb6J06uxDfxm/eH/Aey0tBO9PU2CparHxqcIuFi2cqwujz4fPaanS7McnS1/OhW9oha0u+oGGLR6qmQD5lZTIOnjFjjjdf44sydU2voBWuha7qdTjWpbt1Kkebi13Qk22KRMzVgoHsKr2wgZPII7nmljp/PfPM4DWGF5NXRzwfje1IPexzra0HLwlqcsdtRhYGlbr4h6rK2/Kg1oeoItcPVeFxSxhPjEPVr+j413qR0UyS2qw6rVS5Y3L4qjaQ1R4lqtebKMoM6pFrHAozBzwfjc1rpuPdfakHcA7BLSYc8m/BAyP1+V2JUP+jGHbM43Ay3fWrNoLnqM0xrvaSEJRTjWCiVRV6qqu1IlFd1I17PQ0MHeh0yBgVjCROuD9YrKS3v7EVONYcGgQLQTvknKUA83jyHnexkHoUoC+t8qesOe0CkZE/+u5LQfQQGb+Fj/JJSuyAtZxqtt+mb4kzNlvo6ldszw8TeGytDngmbmBKrKq6urBRtU0VaN7EvK0DPYK0Dg+41bYo0ZkKMuMa93AWt5NxwfWVCkOeL+YGnVrrZCWy3Voh5V3jjw+CfCgRWPPT4D0LCjB+MjY9vCGy7fPiW9yhgAHrJXmtUwT5Q0sB1WLVPUTGrWq+lTdwCOO/ABc9yIJfCkmmEupTIJ4t6x8wPvFdMD7W2kf8JajFSbpkxaQsOceARP4Z2FbrkGsAQZOVXVFC7TEuxXsWD+AmSrqS+YTGvCQk4fQVAwXuNwH/Zwy9or3A96vIUu3nqsZD3LvTAvB23rbGGRQKVGfpJ8f4+e2PATupFTbsTK6kofqba/lW1aFpfpZYZr8B0lpqWHA+U0OmTuvQWW28zhVVNWgR6o3mZEukuLBytOjPMjNTKCqWm2fbmo4JcXMALmoZootyqbG/fNFA1nxOeD9dsqN8s5IPrSKFoI37sJKJ9ICnnj3LFKrudkbHoZSV1rqYK02jseoxNodoHLOMWgWvcokLVksouaui+D+Rbm/QGnTk3ivWqGRB2dF1XudevAbV8aLFRfl4Rrwbm/20IeiC2ir/AHv3WgVeHuWoXj4a4x3T8KZMuN87oeiHGg5baqKaY3RDGKZbksL/niXLTw1tHaKY307bXIjmcnNM/BEM0oh8f3xfi18Vay92UNAvYXKD7zjYge5N6RV4O383SQrrxiNd5oeVC/jlIll0JT1lZr0tkqy1aHM7lpJb8CJlZ6tck77+oh/ibR5SbRa8a7+3uBt/OQXSDjLr5h+/LMu6/y/x4hVkllxtVnsTo+W/MeOJPUDDsAzVj2nzVmVA96vpyoqe2i5FIcYrQLvT1NlTcbWwdXVAKso2U4vpORD/xo9qvkqmnqkGDQn9oRzdbJuadhpkeqatbFxf3VnSbVYo2n6+p5lRNDRAe9voAPe30drwdtPEpsbQUJWiQ6yHuBvJLBlG83W4t1f1e6eRNoTPGHeovC06nKmZNn+6laOv2WPjRLkCd4u8X7A+32kpsWcdLLle9IO4H2Lu7jlOW15bQVj+3N1+WMf8QUP6QBNl7y3OJWNd0w971/Qxq3yhR95MhxcNmIxw1KyHnE+9Il3NdF6aRvb9LOHZ6C3v8SvzDHTpM9pA/NR0zBDPJorgnYs07DC6g4OVpS1mcIqWon3YiD26wBSzPLkgPeX0EHuL6O14M36wmvZS+Q8PfHe4nvdxxAVJKiA6moPtGDxjO14ka0HmT1ma3S5vK6uyAu6tyuZfsvaZP4QNUGCH/9XsuQl9oaK8i2bWt2BKlWpVXthlR7w/h7yJNOOFd5Cq8Abo5QnJ2yx7d8tdhLOl6rjXaJ3awwNVXwE9MrCTiapaSzMBqOuKoLHynIqIxWLJ3lYgdLxJM9O/Tt3Llq8wkm4C6pJdSqGGz/g/W10/7y7WEY1zi8d2oRWgXf6KpUP/fXntzWl19Fit30ZePTWDjUPXP5rwUxVCmfvz59h13MbdqhTeRRcntC+f95VribSb+2MtGUOKSZQlxMjmaISpmQlqXNKVi9yS5XTe6vHzj0tMBtVpWAFZNRUA2E4eJ8136FDCVq48lbXWJjVhwydVrzLphJDgbpmnWaR0HNG1Wy5VdKqWCyVA545epuwug1JyqSOKqHga7SR6rZCNN6vSwneA96HDq2nVeD9aQpnpCnhTbsl8e5fEUYRJSTLkoGuCufOFDT+tkVv0c3gjgSmQe06Lx9U1Vlphpu8D1bCfJe0+Q7BfOjQ62jhyrs0eGvHbi1uKds0Afg5bQ42a6z7OmSBJ4K7IJ0OWvAnt294uLp6Z4t16beqFuuDRyiwjlcPk4P/enQOctrq/kLoRQAnJ1L50eka2zyyFIVv+/FL9wTB+/PVAe9Dh3akROB0AW/MUi+2nQl5Jw3NzQKp5UorOrhd2lFnS7pcASdLYL1ImWzRcPv+grNAqGt/esnyZPWzn0m28m6J9wPehw6tpx3AG/Ro4SU7dPPAXGJIG7LrKm8dKTc/YAkJTxct2ewuYnZR9bStbueEsqXB0EQzvaEgIVye6GSFD3gfOrQjLQRvNbPKUpHgGpOSLadsy0ENXPOilpddyxtjaDHZF2vHkq4UYHq44ZsaeNSWKrUUCxqpJpwpZEpW5SaI84y0RGJ5Et7qVLaJdwesLDdl+3N7STXnfxu/rypB0VJjYclqqvG1HSrd9efVgOpOWTHiAe9Dh3akHVbeHmLjC11wM7Z7rZidxUAeOFTlMdb96TVflyy3X0WswV4s+RPR7L+At2jXiU2KqrrU55aTp0kC823c0iG7Lp8PeB86tCPtBt5+yGQ5c7k+87QMkrcyvezhLTfsVHlL9BXSw1rK7RH4S7YYhbmBbAofJvB0DYDTehiaWdK6IN6tLhaAd7nr+NChQxatAm+QQHZi5PXzkm12t7l1GrkQvQ46utcYSmN2yQSA1PQt7mNXG7fmB3j7wEPWGftc5l9tWRrR2gXwX1ZjManewEPV6NnZwS4HnlAHYxsQ/g1+dc+iWLzEi1x2q5pcAN4bTjAPHdqNVoF3NDzVjGJLvKfHB6Cf6trdajA6e6hyIhlOzCG6DKFgjwDkG2aO3mxh2t6af3fAY5QESzgT4I/3a9WBtQPehw5Vabe0+YfwQvPRtu6q8e4/uoUvEH0cb4p73r6VSA8WzYnRLPQuNVvEAynUxVmVE5axkC3f2jE05+o58ZVHuqjO8aLfozfZIziXhxu0ePgsuO+fl1tjBR7wPnRoR1q78o4GaeGtLGpx6s/TYGLV619aWS04xcRMhtZwlhS5Rb/1RJU91IXVQuh5i41CppH6TJhA7UJFMdUEIR+24h20cMD70KEdaZ+VN8ivPmKYtuIdN6JSy0CBU44tuCgLNGZ0rS48efjynBXwbxNYCNElTc0mMaMT70AK5qK5GarHao3qun7eTojLH/DuQ9Uf8lrO4aF30ULwxod9WKKVfsXYposPlvYEyW2QabSOLN3iXWTWHTgER8UpgluZ/NLU51VjZ7yrGmNSALNW7+ZUC1hGBP7mL0wPrIECnnHPEh9nqm/tN9YsKh4i32tnFfFL6p7tEk/aXPWHarxLDx8L3pZzNza7ltRh1ELur5H60GTaYeXNeqwysMrzPYvXagG8WH/E6o3ZxS81Xqy3L3mdLVcXdi22SBg9lOUOsReVxVkeF6PTWSwU85/7593my9LmXwZjVYQ+4H2oF60C78SoXYYnNvQwzweglYMKOdxHu2BRKeFNDqkgwNkH3FdiR9Zvi17FGJOD8D6nh8ROv3+SpwLnpR3giEpt8WD5FWjqTeDNsmRdqAWPQ3Tebj8UolXg3XLjIwOwWzuzY2FbIXon5UWy0CCK6cjA6tIWCm8y9tVtr5sc/S2Hgdl/S/68lCz/LdlRqoHy2XkOWbYgy6uvALDuQi2AklKQanmWJcZN3eJ1bcytTCYDnq2UtZOKI1VbkGqXGXtWnr3eLWOEbRPcr0ibz4TYcXRW3odCtAq8PYw99nFcOQCB1bBKMt5LC+xfdZVPdcVUJ3lT45T1KE0AwtzSjxwBBg0IVNXWctlvDsqkWqtditLsnBHSkr27dM5VPp1W+uP9mvCedxcYWwW3femA96EQhYL5Q3PAW2X1sSfZeBSTQlWRNUpSmXjEBBWdkY6NNW0o6NURVUU0XQyW/moLpYvq7AfL64mXqqI6gne1C+l7bM4qaXfwHgSlk+kg96EoWXACqCN4W3lX9TegMM+fBDIOAdqLzGCzJ+y/FNHZBRfyTHhhRmXyEpdTqsyoz/3x7rko5vm5f3/9XE/jQ9HWfxkoSoxUW6bJfymXCrQWDx6MvETmIHSvarRkSJaqIJhbmbGXsw3m1Z/yauzvnjZ/e8K8UXuHfjMlPKojeEtm2BJBLTA63kMFqA6tNHj7CMN6VIWqPvePFarmq32FGpxTsn14tDZunB1dcFHLunAqlrUWQoFSmO4BsWZZawe8D2Af2pES3jUOvAGB1QNju7qyica7p/xDZh6hlll5dVs9Gu+XGNyBQiS6+7O71paE9RCw56ybcxgnJ13ocs9yLh9IeRq0TGO1xvwWd70AvKNXByyhkl67a+fSuzvZoUPP0tPm988bMKqslnxgNd7ZeCfzoiqOWviK0ZeFM65V4r3kh2X5z+fqhkKVPiXB6ycg+02HfnCRTvUSFfX5TU7sq2XUfWi1x6g2QE6+ukcgb1CxulDVcmvn26vH9avWl75tVfn8V542/3gIeCthAXh3aaQLcIbaPOB9aCatAu92tp+fWXS1wAPPQjtjjY2Gl71eUVfekhnMBu5CcuWkEL6qX0Wzu4mMPSumtuBpylOmZGjUws6HlqUot6rRQ7bzGMviVs6EsMNLb38BeHdsp6XZA96HZtJa8PbjIub5MXBRrc621QtZ43iVGfmETimq8f5omfzuhk5sVDf25Z8WdCdLgey5p5gn9V01mdOgiQmW1RdIm1fDh4nzDvAeQVEwPuB9aCatAm81jUkHfXmO5kM06X2T89gsvQkuysDHsK3lpmyh8E/PSN/kMHn1VxfZTtmtnUpjDFRv2LbYrp7HpnMXdZFd1Vj5wJK3IPHOWlYPrkeNqLYszQpS7pR5NdOutkAvzKkayMnJQ2JE6lnqx7rsvRRQ4/0m97GzKveS0+aNbXYha+sLhN8B70MzaRV4szbViFAXtYxnz7pH7UJd9ON+rW9Zm0yTFntSFlqFGcjqK5rKZiI0Diwg88ye5DoCXlFdEEfVUt16rz5vVKOnx2rXnqY8zknpgLeXtwPeh2bSJuBdyDliSuSzpGMt4GEdyC5hVWVSztEB9Fr6b4l3q9ME5EhsZs1a6XGQs1ULtEAsFr/8V84wrC15a/+lI5OqTqrFwJTLv0NR3FhN86g0ELyt06ctbfYi646FqpE2lOXQV9Iq8MbHhsHF1J94l/eisLr45hCVqkffP10DJq14B3nOSzuazgpTKdS8KJjx+I/xW3LJQ9TVZDVgtWoFtbCaNvcPjGo22Eq8t1zSUrilbEcvbFetxvTw+XBd/yt9gdw+/Yq+EHGTHwUAxh0I3onV7TRKMLatLIe+klaBtxxxZL/WmtXJM3seXXomcrYT4t2fy63uzaX1gHOz0fHKsrKHB3VZmaARY6w6CXMu4mnCIKEusDS3ZpayhfLkgLc3MreV5dBX0irwZjyo/720bTn/ORLWDugR66dRmZZ0Vi21TG5vuyoCmNwA7FH/C3iuEsvMW1Mxav1oX3iaWOVNdbCqbvG5BFV7wGlz/LOu/RPf8vk3grfKWDVhsqcsh76V1oJ3dcyVt0/cf+4wuX9eciLrOsFDvU8b/PcWp39LC+yXPSVj7Bg2vbNF1b+8c8MSDVzTEVIIS7Te5P4oqyl/5tmZkaY57WpSF3RxG/el4K7LvzIzb21kRLcGQIr7IQ72iMT7X8YPv2L/p3ooPiZfhWCqLqr4jeCd4GpbWQ59K+0J3mBUKmtTz4K1Kjv74CRrESbjF8ulxnuia/DcEtlZkgoljZKAKCc/jWKy8rSXWzsb34U8suCuE2kVtWXgeHQZWfW6z/MD3ge8D+1Iq8CbjiYWY/QzGwGr4I3HQdmppy7WDGXGyu4ycsb7nBFAxbmWpjqKUKrTeUN6riZNEBL2FsfvWcvMV9MZ+4QhqnscMmTAdsAvBW+VK3DPMKjVMh37tVQymVbe79CHVoE3u+eEGk7ttCxVb/GTmh8CqVqZ5abN3uKimOrRd5U9Fuky3tXkKi2vxjtLZkqurALPz+Eb60emf8uT6hUi9FS5GmjW1SuqTiwmPczLeLf0BnioXt4CUvFV23n0Y7XJUvpAIY9IsJf/yh+6Baj0qfLrwFtlqeqpiTTaIY/mj0pD6sJVuoB3muGO8W4tuRLzPLbgpv8FLcvFEF1iYqFk6kJ+oLwxBcqS0ax4QtVVWRImCMW7ZKOj1DJ10V2NoGtLTAr5189NEKYfK44OeLvAW31PdK0gy8m5dP5MLT2RfPmyIL+EloO3XANd1//k8ogamtlRjSznNaKPsRhSiXFFDzSp+QDLx9hKESifLWrZv7SA80iXKilepCbehLZSF1TVqpsxtUgjsqNbOMZvcoRQ5leqsmDxb/GmuEwweBSlpp2k4Be5xLRq1vvnST06SQ3F+1l5B8B7Q0HmkJwGWtqwdOKH7d+mW0zLwZsxU+W2oJfFMy0AmmpZ7amNs0i/xPI3qnx1xJDDNGsZS9HF51u6KECC453Z12qn/MsKg3hXM9uUAdaLKiyVQla09FOEctoCQIZ8DlrDgyqbDkqaDd4tDXahHFT8WoCR/hSCXk/haiNRogmo5QrspXmPTrqDt2e4l2rHDLMsqByUR6jRCTlS+RQGQC35bc73/J4vi/l5UPcImOD+eFf1pkIRbrMlK375jraFMvAXRH02t3jIvMFjLFlSqqXK5O8C73QyoC+6+Ln15KUBsZdumWdU00ct0NtOLcPfPi6XpoTL9QLvarK3+CRLA1oDkH+ZkivDytP0qer81aypvOS1KJ+9155gFaRY1ZCvvpxNX4inVqBS3H/ed7dasFzu+pnllhsQtIBzco/jnb1K7gmTIt3HIlbS228RmngHyC2PyDGjVN/yLwWkyxVjUX+gU94D3tuBt8fRe7WDm0rHYS9SbZdgeK3XdXQDXKUXeBcGmP7lV9fP1Qkbi/tqPtFaGenAylttFig/MZnAzxNBSutSMUthqxHLpmDbtVcge76lzIB4Vwt4wgRk5i1/oxq2WlB163QDWqA6ANKSzwFvJ1eyCjBGTt7EpLVXU36pJ1PUkaIC7kwJQbqANx5lQMbVzzN9iN0YKIfWre5lVtPmrFNPvF8R2JB1q0FqLf0lD5aYnuGO2YIVs7hSUyxVKSwPoSWjjkS/dQKk9d9pAwWWhWkM0AFvV3rWWUttv3p8+i/j59c8pKZ0oo2E1NWFWIYQM2Z9y5Jd1i9H+b2OZVnTuxVdKCFIF/DOhZXlLbSMet2pagXVLrIAyMl/HrJkbwGehOar8V7SnjTeb21n6hPvzNMu7RX5S8NjphaZ07ZGucIksKPMtNOWL/KiPJOa6kH+lwY7PWfO2KMzJykFiHf/5IxamVnQvy6XX6nbTLf9A27Me+X067bf8y5tHvBOpqDVmTigUONRamwKu2k7e41yOdnOKT9q5WmUEKQjeINJYS64qiEAvgUZePmcWs2fimRPqANYnkALyL6AUGB9DJzQ0qo/lKRXWx+crcmSls4vY0qhygUW99UA8XjdRQaW0g7zHOCKuECVrBaqskgRfhd4+7VTreX3JNyLP/wAgaWPk6Lis1qDMN7PQFq6XPDs6asdwdtPFnpJA5XyjxhAsR6c6uqiQ6uWXJblXM7p5I+BjpQZT0Y6oQTQCBDfvwtgzV08E4iqjSxjSQ+xxIz6P7Y14wFQ5BCnYgAAIABJREFUYZKZFVQcCN4bXmwyKJix16r+9LRly4Hjpikkvloe58ATElXV69GkJ2xaqu/jqx3Bu3oVZTF3eV5+iYt6I60SPQMsCV+PKteRl8CMTyoSXwDCAkom21WHYcOdvHrTGe/OCFKXp9Uj3/IXq6T4tGWaHqfi0DPSTFdg94pxYnXBMvOq/+PVOYtZ9vbBIzCScQXc3r+DI32MQQara+kc3Pk6ELwTo89oyrFkBQ91Iw9JWzortpMHCFVVACajGouSnwesyYRxox6yia92BG/MmMUt/UBX5MyjnG2CAs7yIBCs8pbmcYKBGsjaX7CWnu1hIv+LU3FyG4KNZv6kKV0lW6qTvKldVEfUKpMel/Oo0RKTenUXok1JKei/0pGeA94elrAnhcKs2uwI8vcrh7ZV4O1s0NMd4NM5jL7FVzuCdyLfcPnwctyuIWUDsOThwZLiikAv49aT5WY94sbbY8eKd5a4fjQI8XThYZ4hrke0aLTiaYHqIZZHdXRjVfPARmflzfnx3KStChK9spvJPmfZbUnnP5idO8Kdlu6GtwRbzu1XO20tnTJZ5atVTrqAN0jTPdpQUsoXlwM+j33G2TX9r1qSscQMbQlCHUP9bTSPw9DlNWVGXSxWG6R5VFpYvUPmNi4Jf/7zf59x4NLOinuizPK9m9wMQ3lj3Kq5fRDv9GopaTuwLqcn21VW0/Hu3EXyVJF+y6ZK1O4gXp4D3p4JlCUINj8Q3+lD7RQVStbKNd5S0SLnrNnTXWJusYOvVtnoAt5ycKF+Kx9iczstazXrVJSa1bwcJ5YlDzhnqz5nH6wCfkrPfVWVYgNhO8q5CDAiiMeqBSXPqmKxIFZflu1Ym7RT6RUW21YBnHCSfEoeqno74J0E7+oUNfpVmtKq9gRAKEiYs0ZjrLFBf0ddGpnvq1U2uoA31r/6PMHwJTBjhA7BtihgSY0sMHektVh1oBmAdniBXuSSye3qhkJpkPWLWfVYB4M3CENpArmaBwq0vqIN+sO8Km918sf69fsqcC2r/AHvCnhHz4RXx7JeCfOScWrRc9V3E/7t1Fs5nOxkNae3FlNSShyN7u6rVZ2PAG+Z37NMpl6agT1E7chzqbXTbUB4Pj8T9fRAMvNSJhF7Tg8wq/ZS07/V0FYf4o5Uzdx/zkgXG1mbAkVjOPcgrVOey+iW/KuGu7XfWaAN0u0DrDdqzVC8M27pDfbU7cGd/6po1k8DsAKWztWWC2+/CLyxvS2KYkZV/HbwlrO8tJ5xoFqN+7tI6K2XITzmUKXO+ckcd8VVRoB3lckuflg1Pe6a8aDy8xBkKgXUbCctr3qCFFA+t8qXJ35/7hLvFjOsC8B81SJYDyrDrNnr5yzEqR9q3NIIsMVDZlRqybRPhgqoBmK+h6sc8O4J3tWK0QY92mvUcyiYE110kTGttxAPLX4yx11xlY7gTeWN2lp+pgXUxHUJDdq1c3z0xAXdQK22eWkILZu6gvEuP+DnUi6ZJ1f1jO2F3Vs+Z92xjLTs1xJfbdMT74kRuKVw8VJVOpVJZ3RgYtrzNH7Auxt4Oyv6fesyTk46O3LijZWjq/LpVHs6WW0lKkcQu1KjRZ9D3RVX6QjewFuoWZ0Ms7yo9GoLtj+2YBdEy19XVDPtwIg0SU4/lB49P3BpxZH0W/pEnRywukVMGUrMP9lnbLiiZNk124CTZTxv5cjwubUUvXr5+YcH+oTdJ2NZ8xLH1z3xztSiVqRp8+qvslL/tArgKqp+WMXr5xTqgHcf8Ab5N1UDnjb9qvNz5azeEbzT8k4jP7fL3RVX6QvetDuPL6k+U5VRtpAgdSpAeWCOLRPRj1j6qNVlgNBO1YqWQQtOV51NzmmsKmytBpLbrCPLdpY42FKXA0RLj+lMpKcLS7HSATz69Dh/zoEt91NVXZ4c8O4D3v6KVY/pSy1qaWzZ09FasqyfW3x73Glo+PQF7zTD7HNUJ2kdXj+hReWn2ngpplaXhijjey7eacVqUx6q6haoxWrQ07LTgUuDVQ1b0efXg9op9RCW4GF9Vb3l+jmhwd7LijFfBcoH9NvBu3rm2RNIakUrXcwav7veB24RE1P+mKAaJ4Axfxotoc8cpd8L8NtO1lLv7ugC4X5PK9QRvOWp2up5e+ZpheGWg/o0y/2QU8RU+ar5Pvxg92a9YP9kP21Z9RmaDaaNF+VYv6pZPrOfMQVBLfPGjM8S76w1epZeHRBoF9hG7DPbInHGY/UJZZul2WVhJou0GtsroZ2W1D2TTl7JfpEXf+7aRUMP2ftgPFjxrqbZ75M29/DmzP/4e3TmstaSJ0HXaI4EigN+Qmr0MN9LgTPDpyN4D2W4Koizu/IhF1M5tyzF2Ae1O7//P2Qlx77yoxrwxmp1bERV3pBZQWYCqFqyzUwPqpSVOsg8S9upJsCKVRsEWT31v6ogWMm/CLyBlwD2nMHs7y6aql1CVY2Nzg9bPXqYSdsrx9gg/SSYHwHear8qJ5exaeeXN6of66vq1BOzBwpjJkMm88c7KPm4N5jV/9IECZZdRTugiup0SvLAPrB4fwQqM5eTzBdk9XuUX/NVK5fkpRojsmtVD8VPKIel1gHvug1wVES7K5koNf8GUtlVznv9xijlypP870JW4u4SySuPCVhTnxYS+dsuOuzoq7hKL/BmDvAYIxGYMxXl0wIsYUgbue1D41W3Ad+qoUQdA/ihdEJaRd4wY0VKSbSW3LXsiya0WWa78CxX6s57kCw9qL7KIKQwT21ETQl2LrBpytaGqmrqFSq30ovUeL99rzlgH1bd4NM43XdQvVHqQd30UVEGjFr3b0ubWyxh9vC0t71H0I6nrmwkVMvDzG5GLCx1XP1blE6H9JIx1Gwv8FaZ8RuFMcwmXljbuH1PO6FYkBWj8c7yyaBuY7zLAk4ZL21VZ0WQZcSEP/Sq9WjxXhTS2DKra1m/Mf/q4dDTLJP3d4G3fwZaNadzGecMLdwIm6FLAjcLhgi8zgiyBd9NUfzupaJE+HQBb3YojKmiyjA7yEMLeH6aCZP0c+fKW36gZqL/LSvO6+faS00bSN7A0M8iCGhDni8rYV6WmJaLAneVa3qp/E8XcmFN0wa3uFaWtWMtQ8FDS7FqX9Wx9yapZtwmyzrQ86fWjKc4ErWOR9Lr5yyBSSFdFIvw/DbwTiyj1SrtemBBNV/ereyyPzk12bHHVeD9aGd8PKIVFT0/V5k4UUm7kGOup9/LXn5VV8N+KTzig77mhBvDm6JPiwEMcpaePZpnDykznuGuylVIh2xWAVrAeeyrlpNwcmWpy4kLRZO/C7xzXDWKUI3khenf37aMbqSZw3Gil17grTKDVxJsdHsiwEDxEvfoJDZGy8FXlgRVPF1gw6ltqtJFVVdVKe3d6lRWVMX0kIdtmvBICwjqVmcS1vNLZOaBEZ3sSQezPEedH+Befh14Fw2qCedq+URf1ST2/F+sOtRCc3YQ1oK3PKdGf2fp0fKljFV6YM2qQvsqz/1p0uoL37SkajKZ4C2C0yyxFF9lnrrHZWewreS/9Tq71Jj60FKppUCwsCseiP3NIrVlK9PObCcNZLkNM5CzR6Dh5+fuAO1IXgdC2fZMjFiiXnIuZ5kM76U4vxS855OF3MsZO7QnLQRva+1V1h+AYZxXpCVlF1U4Ac9b1ou4CymI+l91o4EttZ1Mhvi/uubPsKrlghK0E1oBA06sfHtLVkBF/dBoXM2OJNhT4x20c8B7Eslp+ElZHwKkrttwlV7g/biHHjYghhh24oRTV1HdWlLIAvRbFb1UVm+x3xydmlT5B4n3tBEt6arysgb7Dm6gx/IVnlkyuUpqBPQyGa26TNYPeB86tJ7WgnchNSNtwQYFKsCwTJM6x/rqGh0clae18EaVJ+vLkqjXnxd/GQ/+jbkq2yArbmmjHErHaXPgV9Zh8qq9qnsf8vT+7dvKxHl1p87xRoxsQd0cAe3QGY+a/S5fySta2bW4gPkD3ocO7UjLwTsarSDe/Uny3II7sc4LdaQKYnWdzu72WpqrqYJqg/6SIcL6kZmbR2BeTvZLHE5U+8JsO6etHk1Wy5eE00mbHzr0bnpF2vxDLD/sZ5gVGL2RBPipdk1lDLVfBuUqNjfu6cq6rOWW4ddCu/aWG23X3nX3JD8wgVXs+Rnvj+8FgQPehw7tSAvBO7T0oT+LdJNzuSV/XsS57fO69IM8Q86SmTe550Tmrml36uFh2sIjhldnzlbmVxkz/hw4UKxkSVYsXsEEueFh7EQ+wJpbyE2QkNtUNRblRzbFUveXduDfw4zsolpRdXtZkhqL/nDZo+0vnLT5oUNb0/K0eSFn2Fp5vwRFV7dVJnGaNMFnIpXdcXkHmgIZ/lD7tB1116OXZhoN0dJ4y36EU3yw8r7F2wft8d4NvBPcHDp06EMLwTsXp1bejxaINthRn1bWNwRORTRWXo7CrFOAHKxHWtK/7+AxmXPXoDrLiU6DorsnKm8si+NUSDXz7CfWVPdJjIx36VpMUQe8Dx3akVaBNz6wzTh8fg5n18+bmVWG2XXZtCmrC7UFmRMuSWz15upSt9Eo7DPIabOcf1WB/jPSzpKy5c8TdjV6qOu0ogDhydNf5MfB1E2QUhHnuj3OAE6bs+ryenmsB3C+vaTW1XgHmj/gfejQjrRJ2rx06llqdIl3ayWqLvvw0mpCplquCxNk5ah78SwX1tYSGeyph5pSExJV8btYJFRlAiThVAqb+1qJK9U0s8H74PehQx5aBd5lORjN397GnaCJQdY5SoB9RKsFcMrJ2a9zolA4qZa3CvRFcQtHAfQCfoBNR+95J9QCTjzgPD+bgjiduWUuwvAbVzngfejQjrQWvAvRrB1m4P55yLzkz8u3Vq3P8VrQLHsCrqS2LtPAPCRM478tPJrrxv36K8rJAdYk3cuQx/ut2+PTh8YtcUDK2rrmBWxMyO7kXk+IZ7Uj1R+i9wWV5DmdBKvylicHvA8d2pE2SZuD1OsjVmNswQ0yrvK/pUE/xFq5Wf96mrZQnZqMM7SqyapveJj0L6xHCDW0TT+UsNQ0LiwLqD5ZILbauxP1qvEuI3EgeD8kCXDA+9ChEG0C3oA9+l+6USd5pv+CkdSD7uC5LBCdB1iUSP4ncKKarPYzX5543AZIF4I93KBnRuK0CEj7sxS3JT7Wj3wywuVkp4yqU7QF4N144PPQod9Ay8GbJaI9YeuJd/XW62rOVu0O5Gw9Y6gz+32To85ADzIFXeVBzYta/3VK5GRSzRvjfQfMAMsDsxu8GQ+qhiWrtGv1s1MtwHWtzYUiBW4ftMxUbcWRvNucITdgYAF4T0jaHDr0dloF3jQfGFr2Wcvu6JKLkrU29TBWzZaDks5ln1VS7bo8dEI7gxOnOKAYY0D90J1AVqD8l/Js8V+1kVWAZn0S3LaXdLZQuC0MV7s44H3o0I60fOXtSeoyysW7NYpJHjy972A4lbeQJqMaSwjeoiswXXD6SaM+20VIU4uqwayuGLEl3nuC92PE83yNHzr0LloO3oycl7ewS1oo29ULpZ2kJt6L0lRNyicgvezffKVlGDOhs+U3vITEklfm1Z25fXxZurUup/8NHfhP2xcXiB50r+YAPJxYN5PjdjwZjpLxohHEjMsaPOB96NCOtBa85SiDU8H0CVtAACy0dvVoI1VFsWWN9V+pW4srLLJaxrOwxiM4a8G50dA4lkaTIqPzpqo7peVybv0kcjx+JlWjW6GkpqyAFMPBW52JH/w+dAiTCt546OwI3tU1XCFWgMY7FYG2SWUETckCj1gFOgks+vFxKnxez7OhC6RjxVpeBI8q5DZ+6sqyyP3nFeToqTrPy+tF/Pvn2UCrPLi7lMpVXYgz4zKFUE8DbmDNyZxLc+vAWokgUHc4eKs8Hfw+dAiTFTigSkfwVgn0LhcKfs7LV2zFWV21VNMDt3Fkt/1cknNJWl2RW2qx1qBDh03PCrKxHY8mOzKPp7whN3BmBZzLfdl7iXcWQUA/K8F7aAbm0KFX0yrwdmIMWBNX4z0R/oyB0BDvZN6T+lbN5Kzin2qoIiTwgPXi0QOraO1/O7sGQlmznyh4R60GtJHoMUGWJnG8S/+/LiV4O4P3QyYRB78PHXLSKvCOHjiSOUwW4OUDuwZVvlssz3A9NbSQxW775Jf6hLbgGY7YaSmZegWJZWq+6jvEwDGkllib1bOBWNiPEQEDVvbYKREzupqQx52qHbWciGSYqjYVspe1/8LaYRsTNGo+O1DqTsQ958Dahw5+HzoUot3S5iB9p2YU2UjkSQN2UdpjL26qFatk5Wb9HFYLg8U3TV14rGBJB4Sl6RNZ8tJeQbasD6RzaiytqyixRb+aoujrqCoP7fE+BLwfiN9DlXLo0Btpq7S5yh4uoE7T1exodPpeTfZ6GrFGaoBzoZHKmkA44fYxAMOJZ13G1V4js7OdxLmEBIeh2UPC0xJrUTpP8ixuy5N54G0dOz9L8EOHJK1deYODuBaxGzE/SXLJfxkHrDYT7+8mUtBqeZaRpoZwNnL/PDv9aPlSdjpailk92e6/tlPNq9MMf2IPWxUKMJCzBWPSSkGrnT7ED4GYdNOEPWeXvGJFAd7w/anSNGyme/28XZgpfx54P3DxfVD80CFKu6XNMVn55MvOn6vxHg3/as7Ws7DOpWdly/5VteTE+ZWzvGcHGqzq/Kveav7cr9VqkkNyVY2ILsmDOZBkrbxBlangrTKHabTKDh3ak5aDNx5A/ZvEJVFpSWTN2qtdqAUo2yDliAX0LLurfQ31DSCCR3w5z2gfbC19+pdkTh6AFM5GEsI6pxqWw1iBQ48X+OP983w2eD+O/LlFn0Qcpfar+A4d2pNWgbd6VJslEgGpV5ZW41oF8uvPJRVWvKvLRHVYwNe/3PbNHtY9oJbJqg9lGc/VNPj5hy6SYrWkqN6TU+03dC0oK9aSbLD05mkcbEOwRDR7ZQBvZFS7wAosXRRO2uN9OHg/8fV3iAbxfOjQZFoC3p+mcvjBStLFEBOBfVDFtBKJVkmpPYt/2jIrHx1A2hVVVR1rSj6JpkMsZ0sUcO47OIVVW26R7rKXy2mrYWHV3L6zKU+w04drwFtl9MD5oUOU9gTv3Chf+JeQbG2KW+CtrlFoSdm1P/uNH1I9yJJgJuFsylkSiOMf7mjJXlOQ0mZ6GiGnJh6unFKHsDw6mVMblxMvWuAS5zOkP4Mel4H3I87XzaSTfj+0Py0Bb89RXvlfRupuK4v3ki137qNJaKfDHFWXvF8dxLs6yEaTw2pSl6Zkq7l9KzWdoCIRO/8vBaeyU24Z8x7MU93juip3/jAm/Q4mVZ2YMyX07NlVUc0tP1u3G9HXMSi6y75WgjelJRCOR4ppsh86pNIS8P405UmH4m8LWevFxMSdVrH0I8s/P9f9oXhPL0nxkouKr050ZHmg/PT6WG2Bzodk7jrnAyqTtO4llrmeHI/a2uVY/ZevQl14hGrpohrv7L+7gDfgfh+arI1DX0Ddc0ugr47gHRKQfvADiZQL46tfP341Wt8C5LDETO9De5K3LS2EmmqkEV0A1K925xy3Oy7VLO+l/KjfyopSwOvndGcv8KYqKJQ+nT6NWFLupOL3IdU0kpa7kJ+AsB3BmyZOPTlA+V9WEWT/SjqdmaN6zYufyjXR5YPaBXv+GK/G3H+uoPHH+y1u8y7P//63/1r6tHRunfwH92kDG4Hctcr8o6XTQV2agW8JZH8xK8yLvLe2BSOd7WP94ga0GHMk6WnSYWhTpWR18wgE2qbgjWn5ANqXToo+R+8C3V4EFNIRvFVtg3gE5f1Lcys/fIvsN9WGFVCekgnlV8tYSyjLiP7wx5nnXAvYpqHc9WUviEEjzD0uAVf0idNAKjbjJ1YBZjurYoI3Jw+WGq9tV95Rag/LQ4f2JxwFHcGbjaQg6OQojIfpasJZdqqClkrO+Zx/qPWTOigXceiT9KRTtuzhAUunghNGO1rFLwsuKcUBcyA2OaNAm+OtHUEwqEttO3uMxvsrwdsaLN6bHT10iBHNrzqDOQfeoVSQeivLYxzYvrWT3tYtJdVz7/LAthXv7XgpT7CDZunzkplneVGZJi2peI8ngB7V52oBupvAeAbiR1UHFEj/a+2SgMadAztjviSxgVAtN4mxLph02A1usk3M4l1ubXwzeHsoZ6FDh+ZTFVN7gfcVScaqu3Gekp4Wrp9vTmMNeNgumqSKfXzLNTBcPNoKe45XRDuS5VtYrSYDck2pbL9o9SVVAVwOKASHz28Hb0Yv8o9Dv4o83tsFvJ0Qq9Jln9PGIjgFZJy0sCrj/UldCGNVDBVQi8lscMfRSbKkdlHdLQbHEYACVTasJAHtomojrGr1MESL9pwWsToFzFCj++P9V4O3JHpA8WTgfwnJs8QLyX9Mtwt40wZvccwYR4qsCFqwfjWyVLzJzRt+PH60E/KYVfrh/vOGixXvNLvbPg6U9O+lZVZxR/KhM/Eui7Fkr1olLRTrVE1ZA57V/YVSi6oIZOaBfpi5S7P0vwUFaAuPtlMjg7c93u+fu0hrfhL0N1BjMB8aSsvdYyh1B+/HveC+aleQ4qaun+lxUMbz7S0S711IbeqKn0IqswSqN1ZgkPOD/0a7ftzJAKda/KR2+mhL816mj3rUZayYKZ9WUPjnqQe8Z9OIsDzUPVzfSCPAu9HVQ+WdEwXQstXCrR2ep//NsWqN0ayXRgphOVWRVZFyFWIyIQ5dpOZawAy0+FUonVOqAC9qJ6s1+fz6mlfFDvWiRF53NJ3rbpzUC7xvkkB+RNaOeQu7B7s8VwuDb9UW8PBqpccTv8+otnBrt5dY2X5n77ILythnjGZ3kqs697RpXZ8uf0xTEnuu7iNUYxa0CXamwP3hwNzSWJ5fhsVdWD9BK7sAu0vY7T0V1Sf3P/59wPvQoVeSXJf0Au8QqUMSXo7gbzFgq0qwqli83WL95O9Ulkys2tXVW0hwzFv5kBYzZAJPF56u5WK6y7r2Jqv/RumqX0W78Jf3xPsB70OHdid14NgHvNUCYDGdG6PB0sRqsAVaPNIBoToO6xL+cQulsN9YXYpJkmxH/UFtQc0q05ar6mK5fbUi3ZVgzONVMtYY27xQ21E7rYD3+Tt/5+/8nb/zd/72/zvgff7O3/k7f+fv/L3s74D3+Tt/5+/8nb/z97K/A97n7/ydv/N3/s7fy/4OeJ+/83f+zt/5O38v+zvgff7O3/k7f+fv/L3s74D3+Tt/5+/8nb/z97I//T1v/4t9v+0+rMnyem4c87xTmG7BWcCjt743Cy4h9f3OEVdheKhL/FtyHVpCnngHBbay4xfEu6rhfeK99ZKWOZKs9QP1lfl9aBxLztshDn0IXP41gjqC96FDhzan/uCtkmf+GG1wgnai9zR1Jzytc6qU3YibYEO9d7f9nshGHvyCWxrwt0lvtAa3dI1Iw/hNdsD70CCybrZfzphK2zLWl5rAe/LCYmfqhVvyNj5A1ZsFb/u38+hv/lj/Df28Ty+SPLAnUX2yWqp+gAKf2g/8AVtMc5sPHfB+NXXZqwoFV3HvhfHu6dpPON79be6Pa9d77zZP2LWFWn63oFqAxRX98GgxAyD2IUiTQ0pnxcZo7NtgdY5S1ZufSev5/ed3lqhZPW7c0UsPeL+CgBuDb7H/T654iCpwFQ0E70bBeh0EyCUzP782eIsfsLN+yQ4Y+FNFfb7c+Zysdvf45ZJa4vdt4SY/hlh1xfaU+9vBe+FZVyve2XNPvI/zrhEOv20wvpFYvI+mgeC9IVFPfX5mUaQZRlhXdtToK8v99ZtoqD6rIX1pq3D1oT+Y3wXeQ+OdUt8wPPRSWhvv7RjvBe/Lsf9aLZOmjzqqBSjh6F1FfUcNS7rdpH4LTRjToxEbqvI14F3M4Y/330Anrl+nz0S8+wt7wRsQSyiV59YBRSsTJckTpdUNYL+WXxcbViJuwwTdaD28y3a5rZzqQDAHvK14t6hvvB869DrKxftA8MbslklEWZHnZF6u90O/gVYhR0voSuAcCt7LbXTo0NtpMXhjQM0F+ZzR4e0DENA8+2q3Sc9DEqFpwaVQltRO8T3MTFBsArOtuiPAe5DI3ds8dOgVlMPpS2Tgr+irYtVIzoV6x71bkP3+HCJNdOFHTetJ4YruGlTTiWDfQV1+fRqU5Utf1opNUscLF9ULXp7//N8n193Y16eAlb/teOyz2hR7DSHqtFF9qlVGgHd6kJpGIW1331FSh5QcddlJCe1ozKSO/KgDXV/yXEE9J94BxcD7eUMwAyblV5586fNnC6Cj3j2k9nU5DvJM43BPonorVlZt1x3dZdchv22k3wnegNSZNBVKzdawAsv9GdAJdpXKXu1MwkAzJ94ReC+Pxl4xzJQoV6UsaEvMz3QF/8DxohgeFFdUXX6QHgre9Lknntt56A7eyyN3xFAwyLF7udCh76Dqcry9iwB4ezLStEyXM8CfbBJ7UpJCLHHBUhnL7fcWmq+raJKwl0EXekU1x/P3v/23Uaju4A3inbLdF1zlEyetsuyhEfT2X6f85PZHxHuhAHh/yJpEpMP16XE9BaaFgd1RitLg5NQ9EKG7dKN1i6s0Krb4c1WfOBzS1B28nzHxfmhn2tZGG87PPIdyZsZ75rT5I4JZPinPR9ggOihP2xQZ1EuvZi090IdWX8vH4qojRdkbuikuVadSWaAnuh4B3s543wqtNxzlNyenxrbF9aFSt1M13nMUBu9Cn7QGPio8LZhxs1tlYKrWqqZTPIctG/0yqrG+5z9XDb5S6kGec5Pbs1l0tCTTRoB3SKhp8f5N8LzV6HRoBN3ai04j4r3nD5NsMhO3eFvORpr5apn3SvdssKafKWbHAPk94J3T9nIeDqn0G0wD8ufpNr8KvEPz8T09pjGRMqipJTR/eyVXMi3dAe9Dh34J7QXe1WwPOyVeiFXsmDX6sgTUkkPgy6UulLYme2eMupx/QnNn782V/NOCAAAgAElEQVSISqfm03JtHvA+dIgG+FYD2od6xfv9j3/nwTt90E59hXqc/Xo1eP08wyW7YGawTNKSsVcVCFhaTntyNVkD1QIhzANfHfBeSOPONi4XbQc9fA11DJM8eFcJj0pDh/UdPH70mbK30C8Rs0U/44L5l4D3Dj62Aw+H9qdl4M36wP5qpc2jXv7GqPBkXJdfGPJq6iJCuV4+UbGjIGqMJLpYC9694v1baeGm3pftJ7bQcm9cv/K+7MtVWLElafNepAroUfTapX81M7+zzp20XMN92f6ClbcqxQHvQ4cYzQbvBOI6Z+Its8LcqSL/Ykst1nIX4+eFv0Z509VD1Aj/Xd783mH7w1L7hzd5+jIqtbz996Ur72dj8F649NxB/ENRGuowaph0ifdue96Uy4ekC77AmxmojBbqCzS2RNhB2E/N3f29vpbJ+AHvQ4deQV0W3y7wTq/rTzB7VFQt890aY9JtstqeTIOCOQ3eOZc78X4oSr/TPeaBd1rXfYPZk1hYNfSnfyPr1b7b5U3o/U/TSKcqPHdceW8F3h2leLWHH/qFNMFj14B3O5fTdNql00G8hUQYzfwIzW81ZDcyI00w6Pa3t4O3KkXLAZF0192t08jb19NRSJTmpc1bjtf2wm8/D+px/KGWSKcZu/Q+QTqrC0vwrYK55WKcaXTAW1ptpvYO5TS/Ib2C/91X3iqIeu5VZWa4tJO9uAUwiHyy1uVY7/3nJ19u8tsvhfPy60+FgLDW6XRQZYnfRAloHnwVdcdxA25Cz7kXGVqo/d7ELwNvP6nxzkxJyfqJp1C8A2am+cyhjjR5NG5f1o4Fb5XFqo5ogdyAbr0IryqL8cb0iOtaXS/0iS60fKk6Z9CXUvsVEg22amHVLUP8/1rw9se7v2TjwPo6Wi7gVuPkhAHwleCdVkpIoXOCebnHW4ry6CdRoKO8LTfJDBpMQ+A9ovcD3u2qG0ejpfjlhON9PjMz431H8PanzanlPp9bkpZF9b3itqTZLcJXr/hlkXrAZVRyHssH7ecG3I55Zjzod4mrkIxdEAjrB+z1OOVdDt5qjLwRvEFe3RPvGxK2wvJUv4ULHuZfSruDt38O23Ga0x66mPMqzHs4THw1yIEaC4yghB/nepkvGla1M1gsWg7e6Yjo3uk0+kpcmU+7BeMEGhHvrutRQ1aZ6e5dArKlnS4pa6ek7W9ANYJ3QpDuDXYkf+9SClWukI2sYC6L78Kexedy8H7eGe+/B7zfxe1oGjHa9Ip3T1Ne8PbnVVjStddvj9P22XH08t9qsmsOir8rQlrMARLvlsNgR0pn7Fu4TXQtpcjJSxkrrzwwdyotVG+GWQLeTEArjkZQ93jPpd/fFe9b0eQXOmTva2VX3cmvEC94N7L4DL5CIQe0sgWpWfbf0Dn2qKK6l5zf4LSDHh0bnDP+Vs/fgTTaVVtzf2gJeKuyzAHvlniX1pEDQq/GDx2idP38sY+0I8XA2xrmwPBHB6Ch4D0txr4PvKPcLke7CV1391Lnfspu4B21whxg+4J47+s5axs8lKNqvGOKgfcTP5fY6OievArdFMSU9lr1px7xEfTcTeweDjsmmqyfsHQme0vdEbmvxC+9+ksWf1g7kF2O1V71Z0bLtyPAOyHRHGAbGu+WnhvjfTm9gsnutE+8s96tYHEyGQZvD9GInTlLHRHMsorkv+PA4VFO3yx3ly7aWbIE7+4tk5dNIamZ/0R5WwjeXxPv6X5/1XK2Xdhp6toq3vvyVgHvMtlMsAX4G6G+QTPxNHhXZUy774bDxLhg9lgt1Psrgvn5uVxwVl8I3kvUe8D7++i7J+uAty7xPvyGNXm/Ac5m+FM96WBuySZZybSqDXCn+3hYRxp0uDTtIfQq+8Lh/FFYnelK3qp0wPuA9yFKkx2jC3tO3u5//HsBeI9LyVaPgvfKElcNsBX0rnLW3fQg3cOa7a6K7caB5reBdzreuwu4Dx4corS5sbrHezfwBufI5ltrRNej+wptWCyBya2w2cOeM5hx/IyT+oB3l+6WxPsmeHCI0ubGmgfeIKNonViuvsp2tZ3SVPu9yS9+MqVUbySunuwtXZSspnULDZOr7ykz9ej7Y+P9oFOmm8SAk40uQ3w0rx4tLN3pLeDtifcRDmPFe0fwVu0yZ3byOO41Gtr7e6mXvcZpOLffWuoGwBurKcTfQuN1Vzd74jngNk12upU7n4fdaP6wm+BQdTBn9bXgvVzJc+I9bZ0J4i/nYSvaP95VJrdIm1vqWxvMLQzIFuTnfYL595DHoNIBWjxhnJXVSaGz7gHvvr2rDsOsc+J9Pnl0vhZ6/DQbvD9JKmcmVjL397/9d+FLfolGPkkzlppT02hYrjknmQed6M5xgveSe2nDuuuekrRUKE5Ym5aG2yWS2zE7rLz9PKwdMTvGO5j6J8bZQ5PpLfaaDd4hqqbNh8Z2YzB7AnjoCLXhVJFR9B3rJdJZyc/QiwxzWG1xrXHg3ajqOapTtdeu/JnxfqgLtcf7NOob753B+69//TPKXEcVyxm01WNZJn4+fJbazjAet9j9sLR2JW1JF0rAdNEDpSty2eHHlNIVy7fVk4x9VWeJZh2EdHZ3wNvZNUvV+Jfao+N9f1ooeOiXLS8tOUoLbCJFy69uDgfvlmBOqJi1X4KN9c5OZZeOWLGW2XdH/9hzmt8yLkcrNmqgar7uwZxe07PN1APejYZOcJuL94604QLx2XUUshS40Hw5VruccekD3mX0mQzekg2PXlQNNgbznhGIdfWVfT0RJ+wV5DnrN2LGAe+F8X5oH5rvhOnRvm+890+bS1VOs+KnO5aaoOpmjHmyZ5508euQG/O8w4+GhQRhGfW+wexJ13cMZn9K/4B3dSgMQbU/3g8tJHk5R3cnrFo/7R5bg7fESGtca9SvWh3PrC3dtU+9v2ySrsreKGNxjDkTHWn05VrFfHYJ5t8G3tGVdK94/zL6AsHfYsrdwXuOHtVme8VwkWK0IYe2/2u5ZXnUnTk/4N299wPev5B+Z7x3A+9PJmFVMN/w0kQ/zXwrfWhHjWp/0UaAyuoVf7d7CZUbBajrOnk+4N0FvDf3EL8qlvMwh6x7HT57oMvZw/Rhkr3v4KzrBW/PJh/tlcYAnlwMdbJeM/EviIRGP94/DApZ4L2cMSfzHWfim4D3NOWfeD/0Luob70nwZlQ4qAYzQ/0JqrFitVpsplGnqagvw6NHvXY9zNdkqMcW8HsFeL9isj4/3g/9TpoB3rj7EGce/tiB3nQgRe9eqBaIZtHB6bzPnSEJre5J8ox3i4qs873taom2QIXKnSkN9Sg99l2nzdcCYV/wTrt0F0/YnL5JlrVqXAneuLPRe2Ch3jsePnf6rqckm6a8OipezfwO0jEXDXW6A3h/R9q8Jd7nSHroO0h6bEu8zzht3tHFO4J3grrwX82KY3NKe78aQS1VbCjUiJnW2fPu2PuG8V6YnKOQQ5vT4pW3h7lb3B5crXhd/2u/CIWphl4cTYt9XvPPnU53plLLZTXqrTWMWLIumq1NlG8BodFXWNzktvnumUxJIwZWf5uqbzBnsMR/NXh3sanV+/x4fwhIR+N9NDXG+2iaHO/Lhc2B9/2Pf4fBO7Fl2GsOy7p2jgjp3kMh7ZdiULMh1VksLQkS63D4ZBVtQuljIs/LwXuo9jx1RwRmqM1pWlob742KWs5qX+p7QHUseBc74Sqh54NU84zcAk87ayLkQBWpn6iGVRuFmmJb/onxznOq4C1h3zeYD3gvj/eEP7MWcnpw6qej5hO12vXzdpoK3lErst9hLLyCFjrmYNUfJC29MzbU9C+4aiYaz1E3VXUFegnFjyURbSSRD0+fx5a7lf43BQb9oKcqHda/9a1/0LH04Kl7wBvHe7sUQ+N9tK4W2kWqt+U4wrR4r0rRDlWzwTtk9bXB/DS4rCx5OY7AWPpJO+tWmhnEUjqMKdtyBT8zK9hrcX/S5iN8aYQ5cMvfEe+DUlZd4l22OU514zSz18rbw9wc/V421nbXNW65u6fK9p+g+6a7kwWuNpjseCR4tEf1Snsk7OKpe8DbUmB3ccbFe0jGdr+aaRqnSp20z4b9CG146g4Hbyv5OU07qtVb0h0450NTOuXYJPbCcq5SZZUtKKXLXuQUvXM+KPuiTzxbyIxa9Bm6SGdOMN9/foqePZ/wu5BgO6Pa+wHvx0CpOfH+KVz1ZzwssH0rLKDzJDbGy8nxfsDbow1P3eHgvWcwW1Hhdwh/etPpfOl86SUSDInduEcMCmq/smS7TZ3BXISa41GTvbSqjcexuD/g/UTivYtcTDSPA4ca9AjYvvueq9hdkwvj/Vl0wc4rwdvjo+NSkZjbdLOyffnc4oEpCpT08JBjGw8Hai/RccTSuRSfRi/774RIXkUtA+UBb0uBXUaSRLwDDeQGxkHxnq6Yjnc//98d7+8Abzk6q4VlIshznTiQNuRzUV+sRqDs1+q9XBxRqn8ET0cm7cV/Zl61jnWIVzYYPQhKK/pHBOpUCav1Ipo/xDfVf6ypeho7we45L20lS98I3jIH27g30QtjQtJZ8Q56Z5c1lZEBs+qM9yq3uXiXlI53p3swQdqT9h0JW8p/eVdCIR+aB94J5rpQSzB7+LTwzOraajM3wXRGZnSfyZ/iazFul0bmk99/mA5b1OKp+EbwHmGddLyn2z/x3qK6nYN9AnWM9wB4F5dVvyqrovcGs4dPud+Mgxks+hOe7Q/OdDCHKobsi6uHtjCASqd5Whdq0edC8C4cvjrePQQE3Cfeo8SYHBHsuNlp7rEbTU2b08x2+VfN2LQzZ7UZJdl7NNuDb+ew4iEkOEhVJWwvGbD4rAZzCPhDNrrty+ZYYvxXEfYBkFkdAd7S87FFloO3qsC+13osjHd/JIYoHe8JxXYcQL6DsA+A9HsYvKO0ZzAXBrqwJFvGwQy66xjM+FtnCOH1QYtlqwfQVnnLckprdQR4R+kXxjumRDu9uu4b7wluQx5y4r093pvAW54m2DaYVUofhSiHy64aagLVAa6sYxqNQftpMxrMH2YaLUuPesmm1KNwuZ1mKkvIZ2a6KGVPFd/TwgHvosDR8c5ES8Q7WHkDrpbE+/XnpFgXy3p+VvHa5g7UCaTq1lOxM3ir9KJg7pKZZ/+V6eson1beMjFNVtlQsTPdRU6B1Y5Kjn3PxFqUq2r5hGJ3AG+V8++O93Q4RLnqFe+gx33i/SIpzJnOs4q6xHsSvMHhIKfJE37gPJEUCman4mjXIAIvB3jjk32ylmeajOOhqp90MLdE2oQhYxxNAO9qlQPegAEcpO3tRxem/nh3VvG3c+K9nbpPKRIiB8AbnJRJGGnafEqeBrdYKt9GeVObYmkx8B6zM2BYHgk7+i1uNLQS7492QWnp6yMFuPGRyWX9LJvfWP7bUoFDqs+Hulzju6f3z3OgofGryHXAW2UAH+rsJaC/l/3j3R+A7W7fJd7fSEV16f2IAHinaXQwY4vSHqv+kevdE8wgNe2PFr+XSw2omgFoQYsBJmndhHWs8n5hLaN3dLAJxBTeK5h/IXiHIiXRfiLdNTreVSaBj1Xj3Tm9WGK1aY40jTrG+wzw7is8gAcGLYyHLlxh1XcP1I7OjZmsCjjIrIkMHrZ+X2cbR4XbjsH8leDtjPdB7vreeMdaqgo41KYh2/Xtdzl1jPdJK++OCRCcPrVUc/vuIyztsCfWmcnyMLqC7EI5raqZq48gzqRW+WE0mSGsGg7Y7oY/6DTCl3agjsG8D3h3tBFI1XqWvzlOqmekse22ivfE3rmlyRADuAq7H/rEe1WZy8DbMxgN7b2RAexe/pJLIpktSbsEc1UhnjI5bU/zpYUe66m4M3jPsVHiFFijUK+I95CWTrxPprSMy8CbfptuM62XFg+IOlbO9T3M93JocGKiMc6LINWccJX/cePybtQxmPcB77Wq+4J476jSoeDdK/t94r1acT14j6PqUUbn1PWCdxQwkncLOC8lKESzgqAiVWzLhQahA59DAxvnz8E52NyZuC5U/UWsD9vR7KIqY/Vk7wHvLvHu36+xQm9EvNOv3hLv1dEA6B+/4TLHnXIU9XZLzGrFeeAt94An6DE9DUxPThNGaqnb6EwTEmgW2+DUrkdXCT2MINZ1l2lB0UNUwAPeTn+WZvqmeG/Xz/40x51UBXZvMy3jPPCOqr6LhfzvPKR9KDTIWn1FlRnVP/uvJ4n9IVU6+XxaxO4TzKDfdn5UDVdrbQve04wyOt5zok2Od0stCamjip1G0zyKGmJo4wkZZ4A3eMUZ1xrUuySZovE766cu5TZqZlq3KnWLWlgCH6x9i0KkdOxz9RaXjmQ5kv+miI4RiF9YamxcCutpc1vwnnk8eA7MtEg0TRvRDbuqdGVDYW3ivfFmmA1JFbNaywXejUOeZYPl2mmnp/fLxLiplo7SAnp4UMeIoZpf4kXTqFcwbwLe3xTvb6GhAi5ciC9X7DRjVWtVwLsc3GiZLe5ghgmeNEGodPs50ei/HwJuoGrjRHKLrT3C0ucHvKs8/BJ/my/aiffuCqxWqYD3X//6J/g9SpXk+B41w6fHhPzlNX/1DHCXbE/5YUp6M+0E085/p/MmV20zTXYRh12KHmXsimfPJmTb0pdmyIfOkKF1u4B3NN49nC8ZdvvG+1uoJd435IrG+3LdDqVEyFTAexBbvSzhbIfa/jJOmZV/AQ01Hg6eRO+h8GgUtrSQqKJaZMTgMn/n1W8pbDtnO13Au132+bFTNXQOPGbyPEjt44RNDxF0KB4a7y+inDmawNvTB35T2SnYHMUxJU7omimqu1DO167awbvKjDqeOuvO0X/jeNGRz3S87ADeVryHWhhtaCveZ1J3Mf04PTreD3WxXbVWE3h7/M/KXLG6N7zz1in/cht4qFFMj9o/lxhUg/YhGwpR15n5vsDzHuN2lPeTsKUWecUlLfj1/UMjyHmqHNtouRS/mS7thZ1qrSbw9lB15Z3IuEb1Yg0cW3ltx/s9nmBKalAwD9Xtq/Ggqhk60/IHyM7gPS3eGzX/LgIr6fnxfihNeLJl0STwlvzRAkWAmcpivS+nLnu61dm3quSc6zg1fIjZyKkcOvKqQ7CkncF7uea/j7aK90ONVJ1ySZoE3tLPPMJYecJeiNt+4Yn6fJyBMVXP1lrysoqfY7p9hXJe8d14zlmlrQYmp3Rq1Hw3eI8w/XdTOt7ngPdWcbc5qVGzC3g/qQO01is0vVTmb8oP8/6SfZ27Gsagu2owA6F+w1sc86mYAAcz0/yrwfvracSJ1Chsg7rL9fObyRnvjDLgHbK0Ct5WSaec85VbeOuFVR7bRJUMqMrMiGB+0YjAzLqcc2YCNZilKx7w7k4d56Yz4/2A97uImgBsk1XjXb+khdYJeaE/mEvSzH9JiycNG62CSeVt7ca5B7kZh1SKHN53sQ6j9k7pOwsyDZu+/Gc+VUdkNcn89eBdzat3T7zv6TNV5AZ6GBfvh9KUmIE9C0+bd5E5BN7j3BS3Oe29VVXJVXlzfvOriOlwwkjnCZmz8naqcUnXE+TKKfnE+4a0KXiD97yt6aE8LXWRlIJz4RtyR5WTkE/jXWHwFXjB3dlv43D5xcHca9nElNldOcwH0q9K7wzewCFl9C1xv14wP/TY3Yn3CTRfG5uCd+N2rCVqVcu05erGlf9kXPeJfGODjVrdap30Fpow2H0leB+/aqcT70t0/pZ4N8E7DbQWWcz534X9ggnjCPAOJQwmB3PHE0CrBp2WYPafyvSY9XpP2vws77rQ6+L9C+j3gnfCXcqdnWld7HDMJHGYzipmJeI+GwpOq9OHRT+J9wst2zXm/19K1DQfS91/fnSOnbcoz2VFVckeu7AnfcE7Z81V8LC/7/W6LKE7eO+vup3JGmxD5h4O3mnZ0sHc4lXdx4vEGITLt8eMX7fqetdaIfXV2ziL7EBUqAueEAy9soGD2TJTX/DO0VnbjaOQbpfH+1cSm5H3anYSeMvRqiptGmDePiWk4nRMFyd0q/L2y8GbWaeLLXp5bK9g3hm83x7d8+nE+1b0PvCOcr9DMPuz6BMuaPSL+WEbH1bPWd3Kv3WEn6jgThtF2QMKZPsIFleDtCGZobtFxRb3P/5d3tdYDt5OAznj/VyGGtWwpVvP6+/z4/2Qn6g5JoE36159/q402utcOReQxSgUKmTFDc00mSX/awgjJHWatfAzGrydGjvxPo7a4/0g957Uf+XdfgpJDeZEC3M0uHCwroqpqs6aUONG1IneK8B7tAk8xVrU0nK2aM7Ke3m8HyqalA8b4x171LHUQuoP3p/rUVt4SgQzThR7sp3d1brctCp9Us0gMv/+t//ef+6BwWF8adfmeGb01VPTOaEW6rNjg1I//gtJ5O1Gc8B7frzvRjszjOOdUiLefxttJX5/8JYd+Ee368+t2lGeQgLPUWsXngcNZNUo9dAEHU6w1DdRl2BO/DWyPRS858zqNvfVV8T7oSgNB+8E7TAT/3pn9Uy0vz6Yv0MKKs4B70N+Jf+2eP8yWg/eap6Q8cSuLo9KWDoaOg13ZlRoGCxJ6X8IXCCPY3iEGkebpmqIQTRZKGmszyYIqHLAezRtcsKrEby/VS2vJjXecRUveKfN89Jgbj+7VG3BrwcPM7kw7vt2MmWmvc2OCmxnftqpydJ1Ytg94D2aWmTpG2VbgfeIMWQ5TfZbdXDGVbzgfZElb4in+cE8U+lzgtlZMjofByJMgN5oCxQ+o2p/0cgCwHtm2jzt2Ae8p1Eu3t9CL4rZLjQQvEsSOKpT9X4AmVntmGsF7Yw4TqyawamZxq7Vo8s3udZDPbGsbm1IczhV2kKhAYXdIh7qZatjpX62GWEp7n/8uyN451T9RG7PfqNRLJEXdk3j3RppPbe4LFdjR528UZwoeKvx3u20+f3zApD3zgETZvDrZx/6ersMklS6tKd9z6ZAKJivS8ZyK3iH4t1i+/f41aFDaeoS7xXwbuHmBPN88mt7lV12m8TM0Xl38H5W73mDLO5yixw6tDkNTJsXcmaeL7I9qQbzS5Mbr6O+0NhiMrYzUvawl7jB/jOG14G3xfYB70Mf2j/oFtIM8G7n6QQzVtfOLl5463L6eqEn7O+EicA54H3o0EtpR/D+7tOnjaZazsbvpHbNj5tg0ZTV8zOkz8r7vbT5pPzQcloG3iAH3hjM2x6VLNsHVu/Vs4IzuVUPnX6eqO80d1Gp8w2CUF9qg85rf+a80dCr/evPUWF/PB/wPvSh6Gs179rBdIrWUagJ+rm0O7VwlT7gjXkaHcxrp7Q7vBLd0oVqjpkqpX1VfUMtkPaoXq7Y7tUSmNXAwfh9wPvQb6AdPKpxhJQiWPEOGvkG8H47nXxaoZxvfIECncGMxT/gfejQSykROAvA20pyWlnNkrIY/WORIxq3UtOyO3oWTFXjOME70sIf9HxgYrxxL2BQ3kzds/h88C+7C297grcV7+9K1R46NJTeAd6JO5umqa9aIMfMaOgdqqK01JtTSK75d8x1CeYdwPsrnefQob60BXiXtVf5d2Ewj1gIjlvetYg5WV1bLZvmw4Ps0VJI2gPVOy9xlQPehw69lLrEe/9XxZ7gGy8qvWIUGMpkS8sjZjCqb0WffwE5vTqqgZeuvNdO1g8NooQRvzXeB9EWK+8qT0uCGecnO7I0DqW2Au+cCahm1sI57XpPgIkG8zXgbvMubG+o2470xbPSRvLAzyGmrsZ4D4C3857UmcGsvtDMWO34HnP5/Pe//de627nj68UzKRd4W73dDtjo7g/dRasGszzweMB7GslX8N8e719MrzBHFLzVeA+Ad3V8t5z77da6/tx+hSX9+iHspfSKBUHChZaD93d7/on3l9JL473KdgW8G1Mf2K03zDjJizIscax5typvoxoPbUvjxmjLnUCVLuDdItGXwZgzwL9M6kNLqD94NzKkIpxM9zmxjd4Z+fzJXKn0OeLLShYcLc8pS4xV8Pv2iTD+NHj/uU51cmCvOgP/Cmq0xSBT3v/49xtPmzthzB/vHYmyBza52uljOOeVvYfeRePue9gOvLvMSQeF2fMTvKNV8MOq1Ak9jCPPSNqr1qpmu3Q3zWTAAwG9BbzT4r+I9onuQ/tTr3j/LeDNWPIUA1p2Vl9LfQeUOUJZDhN1pC7czhyRpfOU3i1BDnj3pRZOvg+8p8V7r6beZYKEC+XBO3fU/PqTs3Jq1sofdgxFfxfpaUQXN6JHBHIu7sn5+FlVjTji0HXfBt9Cqu/Rr2SVLwDvjjP1CZP+afH+e+hdiNuRLMx6jHjPnzanDqo2DYInBA8dI8pSUPe4Zap/F/nZ7ivgS9UVlTGk3uvPglsGs1rl7eC9EG57jTCHDlGKxnvIo5Lg3cKQX55XBDNjcrm7WJoMeVLU895IVDoMMFe/LKi/nS7BfMB7NE122kNz6KXx3g28//rXP1WGaPK2OoCmQRR/W/LkVq2S2y8H163yRZxGew89npo7JElP6jr9r6PTj06g0farffW6xcXfjtzKqXrInuAdUt0qDC7xXmg0Wm/4Akg04jrG+2SFbKj8vcDb4kkWSEilNlU8iS401fbZqyOyTev9lnHBvJByR4q6dO1vp3ELEDjDBDFzDLcH8w7g3aWRLrEWavOL4/3QhhR1tst/PWpuhqVyo+JiqJ1eRzmiwfxomb3lVm+nhYdEGhV41TI3tGSx3XKFO0XzTHzpw+8Ab9lOL/884P17KDdZX8tw+2TdBO9qCFmDCyN88fhoKoKE3oufkEYLiZDrl2Um5LfpbFJHC0YPJ9PPzrrjdig66kF1Ntx+R/DOecImAWKZ5qXxPv9aJw9Ly3nw62Qctx1bjjpb/rT5IIZUqwAjpWNJXUA3zsS3GqpUlY57+SQ9uGyrscl6UJtqn4mnwTttzR3QzqnMr1957wb5hwANXHm38MQ4q1bxg3e1X9CFXNDgKvsHM1BUAe8u2utIrKPq4gsU42gAABfBSURBVHJ/6uUVXYL5gPeHrMk6XhhsK87X0Bfos5cIW4B3iYfPaXN5jfAOOrVuZYkGM+hifmZph1yWypXf6Lshd4If66WJqHWKj5UIqjKzFrzL2yW/M94PfQH1GkJzR4D9zvmhPuCturV/k2lEYCSW0VHl4ipdcCikmerKewnthseqkhuZ75gwYHcfVYOZPl8L3qF4n2/i0fF+6FALOZ2NPu8J3qxL/w1rmwQzY0NytXk8jzgcILsoTWHxlxztds5YZa19ZhgAvKtAeMAbmLgdvJf7hlR44quhSn5Fpxua8tkkbV7oE8zykhO1pL/NKA/Pz0y+dQODbJk+oXe2bBvP0TtVvoZCmfmoShsLhMrTA//+YN5q5S0T1DM9QeXKGe9Sllv86sFaWVQml7OxSvblPHShRLwXDQwEb7C6TftcF2dNzHESR3/n01bvMbdH17ixydPsKjXilbfF1ef5DuC9YZj0ivcdZJFMLmfjUBdav/JmU9ru4O1nw6kmJ+C9Iph3oKKT7lPjxFAVqiJdd6iiPLcm+P3tgHcvTW4uyyFALWmw5cbtEu/dTptbAdDrnu3cpSKMq09arHprRyLzVshz+fkE12Hqmp9gv/9c7n3/vER6HBt+9yi8sSfjqMpb6G7zD7dfBt5SRe3xXtUkqPU1qdqZNDPeX03rV96Uugcz3pYO6Yjx1rIMqi7vaCLU00sXzWxIqg5/28oGeEs1ZVUqWrr6MvDuQipLnqMMuwnyOjrx3q4uXKUJvHHr6q+KtRxYS18TSA80qcdqcjPxahXGwzjDW42nO6WqBmBTTgOBjj5NeSK5cX0zWsMjXhuj6RCG612C+deCN87/VQ2kvhde9ZAlko7QmFXAs3SeFu+bUMt41T3ee668H+NuI1ZscoQnxpeEZplRl5wuaQmMD7fUfFgblk78YezXreVITjs6xffbC4xBIRNgJVebegt4f2W8t9h9H9oz3n8DbQfeGxopN760j0q5YO6rtPQuA8WPUBzmIrlR6q1O4aYH8UT4bAjey/Wfc61fCzCNcboq3pfrbZDmcZU+4F2yf+xAmeRmvqLlQa2E38hLXmWt7pjRcsTjJj+eVjinUnyeW/sFH41ZYXaL91+jBTyUO+LApFs15kpWP+lEf3I1dGDtmnva3Nr82hDwclw5R9J94r0Y5Tbea/cMvy2hOiLePbRJvAOLhARxOqp1QLXpelTa357B/PxJco4I5l7sValqCE87jz363H9+qWUtMZaqDk0L+GPA+u9a8tu9zBqngbfqbzvHe5Srt8R7tB3c1Lvi/SHIvZvL9XIDUPgZ8Z53mqEu8uMCdN3ZGMxgoE8IK1nKxeH1c6Pa2WbIn/rGqpM3v/j0W+ehYuu/aykRO/PBWypzWrD77ZvganS8A95a4j3dDnC5mRR1/qhxv2OyXqgzeFe9k34bTSRW9Z47RFqtpaq1mjksfVWPsn+OHSaCWbLBkmYgl3X/OXUPxGcsgYxcNGlGM4SYyaJ/WYx5DmjHGTxM5MmxXdKeUvNOR9oZvEcoszp05HbucvHuN1P5ucX2eG9vAYvTngyXIQ/KYKH6xrsUeS2WRwW5W65H9acxVW5CKlZbTldMWNoTA7KA3wygotW1pVUn0cKheK625iRPy1QoWd4/kKXjZ2E8J2QZDd4JV6F1G7WRqDUz3v295KbpllYTtCTe/XI52c4pP2rlaZQQJA/e2PzVyPGreK2CrFpyyeuMt2rjoFPs1i2DQlR8VivRtR+8QUkPk1I6NUQTmhlKCeAZDd7dGR5NOYOCEMPCenrJBYLKzMJ4x8UaufLEu5/PFitv7qsdwLsIzM5JsrPNfrXOVFA1x+UxsyeK5NWk6iU2aeo4nZf29eutY56tdOHJj1ni01x0IZluBTzgeLYub4mOAlL/lrwgV7wWvBMXm4wmv99WNR+Nd9VVeoVGFwqJb5XvyE8xjQe8cZnqfgrgYRV+h2z0oQ7grfZR+i4f6IqclpypLKkdq/ertqqjUxYcIdbEpR1u/eSZqqt6cM6CmTV7se3kwWMCy+X8bEwmixPAz1rwvn7G+0LVAR16RhsQQU8kbFmzXxnvQGNR8vOQkCvE6ia+esXjvedPgnriZy14O01lSXFFlrwJN+obFbhf1Rbzg1md5GEeQuLTlv07fPPJykKDeFkO3pZBlyjQYilXsR28G6PYT85+/V5X1VsLt4k9rJD4TumiHrKDr1bA+69//ROnIKhPR7mZH9UJBd3GiejGK3wnTMNv+7aHT4bKo41QMN/kZhjJjJNn1d9u45yqR5OqHqwGnZJ2vMhaTeyr1tnqtLlz66GXlnKUYMm6niiaUpof70A04O2yZKjxcjdXjmEr3q02PX2pbTbG+56+WgFvAACPyC1XWZmjFxk59DmOMacPXfFgphUnVKlq21kLsOTRW84p/YbwmMBvU1kRbHlUuY06rWogxi1uZCZ4Jybr8ynht5Yg6XjP1cpRQq6ra7yneUs06O8o0dQOvlplowLeVeX25WY0JcDbEqQ6RQWyRz3Jua3Oxhe/XHJgqrLqVHWoBdxyy9qlWBmzhJUc9bRGX02wMRq8MQNd9NaXgCdEBan6RvQr7K4jXNRTtxpBFu0M3iOUOcFXMRvXpQRvBbz9o9ImSsEssUOkMt9inRG1fKu0YImfcErrbhlwA3mLjapSUNVZx62Z3uTl8Ld9jbP6PHFYtzTyEafluC/94c4J2z3OJCej0eCd8KXRioqyVLWd5STWKw8j4t1y5rXxntMb5T8UO7lxMsRSWtg5vlplIwzeQ7kZpBHADzsVFTqxBQTETpx2KclzWs+YGbpUbfHvhN6spnLbDR5OHiN1scpp02Y94F21ePsK0hIQu1YLdYl3LN2qeO9oCI85VKl38NscGwPB+9Gw0zLSKu04gzlxTDF94CLq8ezbqPOlYyDRvkd8bIicxtoLO1cMHZ3Z8hxQZS14Ww6vitZFRSEFOu0YcjOP+OPinWJPo1rwt6EuusiY1luIhxY/meOuuEoreLOpbo4bS1PWOrijdqy0LU2TXr47fi3nY16YuMbk06DnWCb77FGLGiSenwR1qj0ahEU/MvFOFRLVodN24FTq/edY+JzA9vgYe7IWvD0MJyitbWBE0IXfXRv93N+ys6Nx8R4yZVoPHRUY0nA13tt9OO2uuEoSvD2+4p+JT9bOI2avsiTQqfrQn2+vWqvqcKWvarLL6XlWRX8AVNufGZlRekSIAn1O8+GEzr8SvPvyU40Ip8/0ivdcfPm5clbvHu87U5Thhe6KqyTBu4Wb+RkJxs9TA28shfWQURq8WUXQVM5TPUzi3aCcTwMOc6J5RhxPC9Inc4ubIotTGwl14SoHvKv89AJvWbH7ZD1HLWppbDmnyZkEUry9pO7rrrjKDPCmqcin6wUXjKyTz1VnArUwcIIjlNZZR9Y4yNP29VrK50dROEVsfXv/ubUmZ6MWYXHd6uFStmHhNDrbN5EpVslVNTcbCh/LeSQd8K7yEzK95WZqxa3i/fNyRyjesexL4h1TtGVgdDB0eLZUxrkrrjIDvLvLaXVXPlh2wtbNOV9IA1F1zfF7sMFhidyePgGRAFSNrVCVGruHao5Sxa/eXv7saZk+PODtYQnz1jfeQflE2I6jXhtwgMC8AagaW8EjlJP5Fu2N81VcJQzefnbHyWl1126hRK1eGli4Kyy7rsrea+9D8pDI5NOhpyPPLSrtpRbMP+trBHj7lTZCDyPUiNmbBt5bnQKpaqx7vFfJE+99ee6iwL5qUUuWz2HwbmRIdeIubtHFPCp7ONNl9QVue/i0pib5S3clJeucsYIenSGhOr11Nn6cgaS87Hf6PCFacvtqC37f80cvu+seJ2arelCNDn6v8PN8BHg3BtcgP2lhqRrvF3wlJNpdyWCHLvH2cO68hKTaPgiucXYEmfxx8d7uMJTJKld+yiXkh4O3xJiFlA7mhGY9MInbqdZS2/H7Hw7jkBEnW7ZLwHgovTzCzHs0FnWV54C3j6VB8e7sMR3vViMj4n0rIz4vj/eQjI3x3hm86Qxl5iJbJfyONc2+ls9sOUXfQk6bpGjm9l0ZyGap5XN5zo6TDHLB0uPzZ9YfMqi/MNAJWMFgBSYCrMgbHRCdq3zMkuqrWLcHvD06lPF+i3sdJLXH+/VnEuxMvWBihfvGOx1wlg/aOcqx3THeo5QIHxd4S4fzhGVjMEexwWnRqCurVRpNMm2MUzeSVa4SjUdrXT+XC3TobJd0kA7VOdwcO0Zd9Hk5eI+w4K+N91UMfA3tHO+FXOCt9oTH3BZpi+JGWAVzpQrVaLB2Jyijc5pU8Lbk7du1h7cuZh3KZNWOc7rDVcaBt0fARrUsiXdPlb5+Mgc7rXhfaAjK22jxu9Ab4z2QNk/gt6epcS+C0y7UpBA4VMIKlwSyE/8uxw+RsZY3IbqbMMgWgxgexMlnn0LNXiYUZXEr/aQq1zjw9tASlPJbNpQEbskYVxdtE8a3Qx1pzg6C9JPqu/VN4I2D0x/MW8V51ZBVbtVv6RT4+rPqHTSDm3OyI6G3jjKOECexNzSOqy4z8W3B+y3xnmaVxXuZuy8XZw5ttfx4BZOzV95V1Ww7E2+xYlUKtYDUxnzXcfboMVMCvDsKMgK8pUXWuut3g/fXE03D/L/2ru3YchQGnqDmdwLaGG4Uk8CGsVWTyiTi3/1wXYrhIYSQkLCb6tqaPdcPIdQ0yBi/3BUBwV85uA2xxPsgMq8nsup+P1+Ynf4rWyytZS1zj0NBM1nQIF9Ur37xKZeu2yBzaU0f2s8QbyAH/zGQu6lX1kO6W+ICwVwX4r0Ei0nq/gvGhNG7BrN/cqw+Zt4AYIGAXSjEex/yZ1r0MVpYDzjFkA2odg+DYMEwxNsa0XKtm+vubsODEU68v7JdTYq8n+LiPWK9br73AnE7sSXpxGaGSpfn/G0ieqaq2KP7frYixPbs7JWIVwmK9k1r6NJ+uoLVp6HE2/rxR7SA9AW8EQH8mP/KdoplvixtKN5frf1B3b2ZbNOdMc9SZb8rtO4Yqh2PA38EeVza/FLa/McIoYw5CPDbHsSaeQdfbd40ZnZ/GHGNQrmi6QfHu9POSYNCXxdZG9CjD3FfX/EOzneiHTfYeYQrAEecLd4qm5PkV6gXCW9YO7a+wnOncN73qvOx6hnOqQsO4+TKNh73GmcU9623l+ec1axdSpifNfM+VLxfiGi7xHDiJNpTAC0f0pvq0+dOizefkC5kdu8vdB8JGzkt7CvmqdabzYtw68JREG8AeA8MxVuwuri3TWC0MZRdY9TeWLmgYlf4kiYgqt9zZhy9ESwZCSjecfwJAJGhL950WnL4bDIX7LTsfFgH8afUE6JtD340mk8fImTeVGxIOWr36tSG1Xymq68i3mKvisU7oPMBYDMOe+Zdz03dPfh4PGkmtL6bqSwdspg94kvaFH0uzLwBYARZQG7QpljifY1e/aw7o1PUXdB9c3Ri2DuLkS6lOBni06DpLqNtXoh8OOdVgjiTxSZ3aNt8xbtnc89pcehs14KwITji+MdcvAVvM9fg5+WK7HeEVO21sNvJ8Cw6LypYOZ9MnXUd53jagJWuuenhIhjyhV3N38W3pt2yTXKOW7B2afB9j2+D4PHDFyM/PDJOzMV7apzSmzosphzdvayF2brws8T5kcd5jDkjP65eMj9MEcdXvF++QBUQ4/Fc5uCMtPk28X7tIzd0lw9AGsScPvPev28BAByHreLN32p71iZdjzAP06V9vh5bluRZX9HtvibccQcVX6jU+uv7k8O958dGq80XzfblOxOPzLsCR2OreDM5qULmmF0A0y3vFLA3QyVWe8QhwslUvJlhfIR4A0A0CIgjF28miq+KqfNZRRqJkbjuGqWA6+9k7r1n1RaT+3yR3T0apW9B2zA1+98WBhw0iUNXx1S8V8yGfj8DFhQ4ohvcgB7fCf8Yinfa/qJJZoLPsw+2+X/tLYZSD8reo74i87l4C12bp7BNyXSrSQdeqBxJIk6x1Vpw8Rbw3cW3R1wTeA8E6z0H4r3y2HIo3rMvH5s6rv5x0SRTMjM9ZmfD8MrrQ5MkWnZujIypPU/uPwUXb8jbCl5LhJdgSrx7fP/rt9///lpPa/TIvJPPzFFIygbzT1n0jGk1Zz8Fr2jq+nvekfNpG2ybIvP9YwTxvmLwXeZwdxvi2Lz53esTna/ucOWZN//ew/T1iXzeALF+F6mLxavZ2XmEM2exIWinZt43dor3cKgHvgMAHyp8F4r3kJMEn68A2uBlwJ77uj+YWAen018ZCblXsK5vZPHmuJTgO2AKjJCOg6d4EzZd398KI/jsPiTn3525BVhx5ZhJ4HwRtSxTPdtq4lbek6nuJaXrrWrpdfhaTVPTZGr1qaN4B+f7bGC42wCoI1SfHFG8c9BkNmK1xUifc81C4yNMOIapzvieH95xw033CE+xyPy4mXfT+NNVfLb5AFNE6FS1EF28Lzafm6yW8UG3gWen3aGwuUPpOcquy35A2jwF2Olp87ytmXB3PmAENO4QVuJNJFRlidYpSqe+/vO9SUX6d/O7WyqqEGcZJ3HKcCY9bJ39e48ANFKL+Iq3YkZRxvfE+vztj1B5TtMYkPnZ3XJADMOZt0w/auPuf9f28Sfigik7E01nRRgzHj3d162s7pQ9Wn9XVHx2bqoo3ur1kik359wnBUBkqwBrWIl3D2JdMRXv4pr1rV8lh/wW4TT3fqvsbhoqBlI+KTdvkcxBxLtXlz18B4Ab0UZFw8G6rXiv+LG3nnYRySnpl3rha0rH9fYDUW/mlYyfSrawqGZdcc4y6ft4cf/IP7G25Kkp057Pf//7qw7azzmrzZs1suB77hzirzTfnxpdnEizOxGYwjHiXcOO2LK+QL12zMarj7Qmz6wYE/4R6/rwOqf3IPWOOhwn0GQu/je4eNcOcae5L9+vXW8uLEKL1MDQz6eKty97aRuINHtaTUPXbmpxgHsYnYVZOdxpG70OhYjG+sS6ph+It32fsMEPOwMSMMVw3dlsb9C70We4t7mvC/K15bmIuuDmWO/DbT9//Bmm5ooKpgOKnVJ+/vgz6yvdtcHi3iQPtfUVjrrhlKpWtFEdY5/s1YYenfIwoOOT3qvk6j/cEXxb8yzxrqOu2RaOuPpbzczyncAs34EhenzvxRhNUiImhzsR1ZcSBGEPQcWbwCebB/Ndxj9YHb0pVK+FVubodGNzrkC4/Zpcn/jJRpR8O/NxTH5knXbmMIHZ7i6CUdSCaQPh8HPFexil+1tHt6GJRqTbFPiMpq0Jvv28XfD03KIp3sXNtOZYnOB2d/Fse+T/FvdN+YlNJ/CFIW+++gr16b1b8+tCH1lXhzMGqg+Qxca2iJq9Ec2Cp4r36XwHVDBs9+eJ9yzf1WbenDySbsq3uBSRKlHRS2uk1NzmiPnqb0R/xBxo1kiivl4mNTHMr75HvHudSY/v1u0bKk6AZ0DAd5MPk4TF7aYNnLmeNSTsQdGTs1PzyFCxdkill4s3n+8AEB8CvmuKN8eCUBgmopsw6hR6l43cDZ0l3gfl2TiEiiDe5/LdHT1jQhkJ7AEnem3Fu8kWcZ7cZSPuO/9WLy5NXr7/ZNF+60sZ7WxTgfpDgfyCnGR40z9Fc6fL3qH7+d5UvwiMz/fyBRr5+vYCdYylU5ixGkG8zwXdcDTRAHeIH37J2EqfyEHv4it8VxDv5BR3Qpri0xofffqLv4jouYJNAh6Aoi3Sj3vCwAWO4h3HCZuxEpyAIq7O1ggPhol4a8FR/sUNP7R5PUynZP5qaVjzmDzc3ak4VTtHuqY5dwQ4ijfQgyMveh3FBb6vNah7UF0Wm7T0Zv1NSfv6+43eGkdsOKxlZP090yQM9KdOh5mWdCLzsGYyp/i9+RyBzhHVV85/6SWN69rZvZ4gQ5AM09c//0G8j0YixY2dvd9iBlgXR3T77mjyfXXm3ezL6NGK4ljmHo5N9aezx3PqC6jAaHD9lT2iFpjk7pbcOTneKd5xWgQIiwcESZ1H2STeQCg8IJQFVc4jk+mBOiu+03XMsUuql4t4g+/xAb6/hO9KA3gUFBQUFBSUXQXijYKCgoKCcliBeKOgoKCgoBxWIN4oKCgoKCiHFYg3CgoKCgrKYeV/rsS1MxFA/lQAAAAASUVORK5CYII=" alt="" />
下面附上,上述实验的matlab代码。
% PRML image de-noising
clc;
clear;
close all;
A=imread('a.jpg');%读入名字为a.jpg的图片
imshow(A);
M=400;
N=300;%把图片处理一下大小
A=imresize(A,[M,N]);
X = rgb2gray(A); for i=1:M%%二值化图像,要根据实验图像来改天阈值,本实验阈值为200
for j=1:N
if(X(i,j)<200)%200为阈值,请您根据实际实验图片改变
X(i,j)=0;
else
X(i,j)=255;
end end
end
Y=X%把原图X保存在Y里
imshow(X)%显示X
for i=1:M%这两个for循环是改变二值化图像10%点的值。
for j=1:N
if(rand()<0.1)%以百分之10的概率进行改变
if(Y(i,j)==0)
% Y(i,j)=250;
Y(i,j)=255;
else
Y(i,j)=0;
end
end
end
end
figure;
imshow(Y);%显示带有噪声的图像 YY=zeros(M,N)
for i=1:M%把{0,255}转换为{-1,+1}
for j=1:N if Y(i,j)==255
YY(i,j)=1;
else
YY(i,j)=-1;
end end
end %参数设置
beta=1.0;
yita=2.1;
h=0;
%step1
R=YY; %R是要逼近X的图像,YY是噪声图像 %step2
Change=1
while Change %系统扫描法,可以试试随机选点法的效果
Change=0;
for i=2:M-1
for j=2:N-1
temp=R(i,j);
%若这个点状态为+1,计算这一点的能量。
%解释一下为什么是2*beta..因为这个点不仅影响自己的能量函数,也影响了周围四个点的能量函数。
%所以-2*beta=-beat*(..)-beat*(...).第一项相当于它自己的能量函数,第二项相当于周围能量函数的一部分。
%R(i,j)不会对其他点的能量造成影响,所以只考虑(i,j)点的能量与其组成团的点的部分能量函数即可。
R(i,j)=1;
Epos=h*R(i,j)-2*beta*(R(i+1,j)*R(i,j)+R(i-1,j)*R(i,j)+R(i,j+1)*R(i,j)+R(i,j-1)*R(i,j))-yita*R(i,j)*YY(i,j);
R(i,j)=-1;
Eneg=h*R(i,j)-2*beta*(R(i+1,j)*R(i,j)+R(i-1,j)*R(i,j)+R(i,j+1)*R(i,j)+R(i,j-1)*R(i,j))-yita*R(i,j)*YY(i,j);
if Epos~=Eneg
R(i,j)=1.0*(Epos<Eneg)+(Epos>Eneg)*-1.0;
else
R(i,j)=temp;
end
if temp~=R(i,j)
Change=1;%若有变化则继续while1的系统扫描,若每个点都没有改变则结束程序
end
end
end
end for i=1:M
for j=1:N
if(R(i,j)==1)
Y(i,j)=255;
else
Y(i,j)=0;
end
end
end
figure;
imshow(Y)
%错误的概率
disp( ['error rate is %d ' num2str(sum(sum(Y~=X))/(M*N))])
http://www.cnblogs.com/Dzhouqi/p/3207601.html
概率图模型PFM——无向图的更多相关文章
- 机器学习 —— 概率图模型(Homework: Representation)
前两周的作业主要是关于Factor以及有向图的构造,但是概率图模型中还有一种更强大的武器——双向图(无向图.Markov Network).与有向图不同,双向图可以描述两个var之间相互作用以及联系. ...
- 机器学习 —— 概率图模型(Homework: Factors)
Talk is cheap, I show you the code 第一章的作业主要是关于PGM的因子操作.实际上,因子是整个概率图的核心.对于有向图而言,因子对应的是CPD(条件分布):对无向图而 ...
- PGM:概率图模型Graphical Model
http://blog.csdn.net/pipisorry/article/details/51461878 概率图模型Graphical Models简介 完全通过代数计算来对更加复杂的模型进行建 ...
- 概率图模型学习笔记:HMM、MEMM、CRF
作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商 ...
- 概率图模型(PGM)综述-by MIT 林达华博士
声明:本文转载自http://www.sigvc.org/bbs/thread-728-1-1.html,个人感觉是很好的PGM理论综述,高屋建瓴的总结了PGM的主要分支和发展趋势,特收藏于此. “概 ...
- ANN:ML方法与概率图模型
一.ML方法分类: 产生式模型和判别式模型 假定输入x,类别标签y - 产生式模型(生成模型)估计联合概率P(x,y),因可以根据联合概率来生成样本:HMMs ...
- 概率图模型(PGM) —— 贝叶斯网络(Bayesian Network)
概率图模型是图论与概率方法的结合产物.Probabilistic graphical models are a joint probability distribution defined over ...
- 概率图模型(PGM):贝叶斯网(Bayesian network)初探
1. 从贝叶斯方法(思想)说起 - 我对世界的看法随世界变化而随时变化 用一句话概括贝叶斯方法创始人Thomas Bayes的观点就是:任何时候,我对世界总有一个主观的先验判断,但是这个判断会随着世界 ...
- NLP之概率图模型
1.概率图模型 概率图模型是一类用图来表达变量相关关系的概率模型,它以图为表示工具,最常见的是用一个结点表示一个或一组随机变量,结点之间的边表示变量间的概率相关关系.概率图模型可大致分为两类:第一类是 ...
随机推荐
- jquery插件大全
241个jquery插件—jquery插件大全 免费JQuery插件 推荐12款非常有用的流行 jQuery 插件
- Git高级操作
本文是在Git操作指南基础上衍生出来的高级操作,如果你对git不是很熟悉,建议你先阅读Git操作指南. 一.忽略提交特定文件 如果你不想让一些文件上传到git仓库中,可以让Git忽略特定文件或是目录, ...
- PHP-001
ThinkPHP单字母函数(快捷方法)使用总结 http://www.cnblogs.com/caicaizi/p/5173093.html
- GIS-010-ArcGIS JS 三种查询模式(转)
QueryTask.FindTask.IdentifyTask都是继承自ESRI.ArcGIS.Client.Tasks: 1.QueryTask:是一个进行空间和属性查询的功能类,它可以在某个地图服 ...
- Linux基本监控项目
1.网卡流量 (统计网卡TX(发送)RX(接受)流量脚本) 使用 Nagios 来监控网卡流量 2013/01/31 Nagios, 网卡 监控统计与日志分析 评论 2,272 下载地址为:che ...
- linux 添加交换分区
[操作简介] 增加swap分区方法: 1.新建磁盘分区作为swap分区 2.用文件作为swap分区 (操作更简单,我更常用) 下面介绍这两种方法:(都必须用root权限,操作过程应该小心谨慎.) ...
- Mysql全文搜索match against的用法
全文检索在 MySQL 中就是一个 FULLTEXT 类型索引.FULLTEXT 索引用于 MyISAM 表,可以在 CREATE TABLE 时或之后使用 ALTER TABLE 或 CREATE ...
- LeetCode——Move Zeroes
Description: Given an array nums, write a function to move all 0's to the end of it while maintainin ...
- kubernetes 创建tomcat 容器
方案一: 使用k8s dashboard 创建rc 1. 界面操作 提示:暂时 忽略 查看: 2.测试 由于是外部服务 直接用 节点的ip访问: 同样也是 第二个端口可以访问.感觉 跟之前的提 ...
- bootstrap之辅助类
类 描述 .pull-left 元素浮动到左边 .pull-right 元素浮动到右边 .center-block 设置元素为 display:block 并居中显示 .clearfix 清除浮动 . ...