转载:http://www.jb51.net/article/118936.htm

本篇文章主要介绍了Python使用plotly绘制数据图表的方法,实例分析了plotly绘制的技巧。

导语:使用 python-plotly 模块来进行压测数据的绘制,并且生成静态 html 页面结果展示。

不少小伙伴在开发过程中都有对模块进行压测的经历,压测结束后大家往往喜欢使用Excel处理压测数据并绘制数据可视化视图,但这样不能很方便的使用web页面进行数据展示。本文将介绍使用python-plotly模块来进行压测数据的绘制,并且生成静态html页面方便结果展示。

Plotly绘图实例:

1、line-plots

绘图效果:

生成的html页面在右上角提供了丰富的交互工具。

代码:

 import plotly.plotly
import plotly.graph_objs as pg def line_plots(output_path):
"""
绘制普通线图
"""
# 数据,x为横坐标,y,z为纵坐标的两项指标,三个array长度相同
dataset = {'x': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
'y': [5, 4, 1,3, 11, 2, 6, 7, 19, 20],
'z': [12, 9, 0, 0, 3, 25, 8, 17, 22, 5]} data_g = []
# 分别插入 y, z
tr_x = pg.Scatter(
x=dataset['x'],
y=dataset['y'],
name='y'
)
data_g.append(tr_x)
tr_z = pg.Scatter(
x=dataset['x'],
y=dataset['z'],
name='z'
)
data_g.append(tr_z) # 设置layout,指定图表title,x轴和y轴名称
layout = pg.Layout(title="line plots", xaxis={'title': 'x'}, yaxis={'title': 'value'})
# 将layout设置到图表
fig = pg.Figure(data=data_g, layout=layout)
# 绘图,输出路径为output_path参数指定
plotly.offline.plot(fig, filename=output_path) if __name__ == '__main__':
line_plots(output_path)

2、scatter-plots

绘图效果:

 import plotly.plotly
import plotly.graph_objs as pg def scatter_plots(output_path):
'''
绘制散点图
'''
dataset = {'x':[0,1,2,3,4,5,6,7,8,9],
'y':[5,4,1,3,11,2,6,7,19,20],
'text':['5_txt','4_txt','1_txt','3_txt','11_txt','2_txt','6_txt','7_txt','19_txt','20_txt']} data_g = [] tr_x = pg.Scatter(
x = dataset['x'],
y = dataset['y'],
text = dataset['text'],
textposition='top center',
mode='markers+text',
name = 'y'
)
data_g.append(tr_x) layout = pg.Layout(title="scatter plots", xaxis={'title':'x'}, yaxis={'title':'value'})
fig = pg.Figure(data=data_g, layout=layout)
plotly.offline.plot(fig, filename=output_path) if __name__ == '__main__':
scatter_plots("C:/Users/fuqia/Desktop/scatter.html")

3、bar-charts

绘图效果:

代码:

 import plotly.plotly
import plotly.graph_objs as pg def bar_charts(name):
'''
绘制柱状图
'''
dataset = {'x':['Windows', 'Linux', 'Unix', 'MacOS'],
'y1':[45, 26, 37, 13],
'y2':[19, 27, 33, 21]}
data_g = []
tr_y1 = pg.Bar(
x = dataset['x'],
y = dataset['y1'],
name = 'v1'
)
data_g.append(tr_y1) tr_y2 = pg.Bar(
x = dataset['x'],
y = dataset['y2'],
name = 'v2'
)
data_g.append(tr_y2)
layout = pg.Layout(title="bar charts", xaxis={'title':'x'}, yaxis={'title':'value'})
fig = pg.Figure(data=data_g, layout=layout)
plotly.offline.plot(fig, filename=name) if __name__ == '__main__':
bar_charts("C:/Users/fuqia/Desktop/bar.html")

4、pie-charts

绘图效果:

代码:

 import plotly.plotly
import plotly.graph_objs as pg def pie_charts(name):
'''
绘制饼图
'''
dataset = {'labels': ['Windows', 'Linux', 'Unix', 'MacOS', 'Android', 'iOS'],
'values': [280, 25, 10, 100, 250, 270]}
data_g = []
tr_p = pg.Pie(
labels = dataset['labels'],
values = dataset['values']
)
data_g.append(tr_p)
layout = pg.Layout(title="pie charts")
fig = pg.Figure(data=data_g, layout=layout)
plotly.offline.plot(fig, filename=name) if __name__ == '__main__':
pie_charts("C:/Users/fuqia/Desktop/bar.html")

5、filled-area-plots

本例是绘制具有填充效果的堆叠线图,适合分析具有堆叠百分比属性的数据

绘图效果:

代码:

 import plotly.plotly
import plotly.graph_objs as pg def filled_area_plots(name):
'''
绘制堆叠填充的线图
'''
dataset = {'x':[0,1,2,3,4,5,6,7,8,9],
'y1':[5,4,1,3,11,2,6,7,19,20],
'y2':[12,9,0,0,3,25,8,17,22,5],
'y3':[13,22,46,1,15,4,18,11,17,20]} #计算y1,y2,y3的堆叠占比
dataset['y1_stack'] = dataset['y1']
dataset['y2_stack'] = [y1+y2 for y1, y2 in zip(dataset['y1'], dataset['y2'])]
dataset['y3_stack'] = [y1+y2+y3 for y1, y2, y3 in zip(dataset['y1'], dataset['y2'], dataset['y3'])] dataset['y1_text'] = ['%s(%s%%)'%(y1, y1*100/y3_s) for y1, y3_s in zip(dataset['y1'], dataset['y3_stack'])]
dataset['y2_text'] = ['%s(%s%%)'%(y2, y2*100/y3_s) for y2, y3_s in zip(dataset['y2'], dataset['y3_stack'])]
dataset['y3_text'] = ['%s(%s%%)'%(y3, y3*100/y3_s) for y3, y3_s in zip(dataset['y3'], dataset['y3_stack'])] data_g = []
tr_1 = pg.Scatter(
x = dataset['x'],
y = dataset['y1_stack'],
text = dataset['y1_text'],
hoverinfo = 'x+text',
mode = 'lines',
name = 'y1',
fill = 'tozeroy' #填充方式: 到x轴
)
data_g.append(tr_1) tr_2 = pg.Scatter(
x = dataset['x'],
y = dataset['y2_stack'],
text = dataset['y2_text'],
hoverinfo = 'x+text',
mode = 'lines',
name = 'y2',
fill = 'tonexty' #填充方式:到下方的另一条线
)
data_g.append(tr_2) tr_3 = pg.Scatter(
x = dataset['x'],
y = dataset['y3_stack'],
text = dataset['y3_text'],
hoverinfo = 'x+text',
mode = 'lines',
name = 'y3',
fill = 'tonexty'
)
data_g.append(tr_3) layout = pg.Layout(title="field area plots", xaxis={'title':'x'}, yaxis={'title':'value'})
fig = pg.Figure(data=data_g, layout=layout)
plotly.offline.plot(fig, filename=name) if __name__ == '__main__':
filled_area_plots("C:/Users/fuqia/Desktop/bar.html")

小结

本文介绍了利用python-plotly绘制数据图的方法,实例中 线图(line plots)、散点图(scatter plots)、柱状图(bar charts)、饼图(pie charts)以及填充堆叠线图(filled area plots)这五种典型的图表基本上涵盖了大部分类型的测试数据,各位小伙伴可以加以变形绘制出更多的漂亮图标。

文中所示代码:test_plotly_jb51.rar

参考资料

1. https://plot.ly/python/basic-charts/

2. https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf

Python使用plotly绘制数据图表的方法的更多相关文章

  1. 5 种使用 Python 代码轻松实现数据可视化的方法

    数据可视化是数据科学家工作中的重要组成部分.在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解.创建可视化方法确实有助于使 ...

  2. [转]5 种使用 Python 代码轻松实现数据可视化的方法

    数据可视化是数据科学家工作中的重要组成部分.在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解.创建可视化方法确实有助于使 ...

  3. 绘制数据图表的又一利器:C3.js

  4. Python使用Plotly绘图工具,绘制饼图

    今天我们来学习一下如何使用Python的Plotly绘图工具,绘制饼图 使用Plotly绘制饼图的方法,我们需要使用graph_objs中的Pie函数 函数中最常用的两个属性values,用于赋值给需 ...

  5. Python使用Plotly绘图工具,绘制甘特图

    今天来讲一下如何使用Python 的绘图工具Plotly来绘制甘特图的方法 甘特图大家应该了解熟悉,就是通过条形来显示项目的进度.时间安排等相关情况的. 我们今天来学习一下,如何使用ployly来绘制 ...

  6. Python使用Plotly绘图工具,绘制直方图

    今天我们再来讲解一下Python使用Plotly绘图工具如何绘制直方图 使用plotly绘制直方图需要用到graph_objs包中的Histogram函数 我们将数据赋值给函数中的x变量,x = da ...

  7. Python使用Plotly绘图工具,绘制面积图

    今天我们来讲一下如何使用Python使用Plotly绘图工具,绘制面积图 绘制面积图与绘制散点图和折线图的画法类似,使用plotly graph_objs 中的Scatter函数,不同之处在于面积图对 ...

  8. 性能测试 基于Python结合InfluxDB及Grafana图表实时采集Linux多主机性能数据

    基于Python结合InfluxDB及Grafana图表实时采集Linux多主机性能数据   by:授客 QQ:1033553122 实现功能 测试环境 环境搭建 使用前提 使用方法 运行程序 效果展 ...

  9. Python使用Plotly绘图工具,绘制柱状图

    使用Plotly绘制基本的柱状图,需要用到的函数是graph_objs 中 Bar函数 通过参数,可以设置柱状图的样式. 通过barmod进行设置可以绘制出不同类型的柱状图出来. 我们先来实现一个简单 ...

随机推荐

  1. 项目报错 exception 'RedisException' with message 'Redis server went away' in XXX

    检查服务器防火墙是否开启redis端口:如果返回no 表没确实没开 firewall-cmd --query-port=6379/tcp 开启:firewall-cmd --add-port=6379 ...

  2. C语言--第四周作业评分和总结(5班)

    作业链接:https://edu.cnblogs.com/campus/hljkj/CS2017-5/homework/1129 一.评分要求 要求1 完成PTA第四周所有题(20分). 要求2 4道 ...

  3. Learning by doing——小黄杉获得感想

    突然想起来前一个月答应了栋哥要写一篇博客的,后来一直忙于复习就忘了. 不过答应了的事就要完成嘛. 获得感言 首先就是非常高兴的了,这也是对我的能力的一种肯定 这次的获得原因是期中考最快满分,emmm侧 ...

  4. Spark各个版本新特性

    后续会添加spark生态系统中各个组件的兼容支持情况... Spark2.0.0 * 2016-07-27正式发布 * 它是2.x版本线的上的第一个版本. * 300位contributors的超过2 ...

  5. java基本数据类型的范围

    System.out.println("BYTE MAX_VALUE = " + Byte.MAX_VALUE); System.out.println("BYTE MI ...

  6. java中事件驱动

    在java语言中,事件不是由事件源自己来处理的,而是交给事件监听者来处理,要将事件源(如按钮)和对事件的具体处理分离开来.这就是所谓的事件委托处理模型. 事件委托处理模型由产生事件的事件源.封装事件相 ...

  7. LeetCode - Subtree of Another Tree

    Given two non-empty binary trees s and t, check whether tree t has exactly the same structure and no ...

  8. centos7安装terminator

    用惯了terminator再用系统自带的终端,发现很不习惯不能快速分屏,于是琢磨着给centos7安装terminator 方法一:rpm安装 首先,下载rpm包 wget -c http://li. ...

  9. 在Android上运行Java和C程序

    在linux上运行java程序,直接用javac编译,再用java启动虚拟机运行就行了.但是在Android上,由于虚拟机和pc端的不同,所以操作方法也是不一样的.下面介绍Android上运行Hell ...

  10. C# to IL 12 Arrays(数组)

    An array is a contiguous block of memory that stores values of the same type. These valuesare an ind ...