The young and very promising cryptographer Odd Even has implemented the security module of a large system with thousands of users, which is now in use in his company.

The cryptographic keys are created from the product of two primes, and are believed to be secure because there is no known method for factoring such a product effectively. 
What Odd Even did not think of, was that both factors in a key should be large, not just their product. It is now possible that some of the users of the system have weak keys. In a desperate attempt not to be fired, Odd Even secretly goes through all the users keys, to check if they are strong enough. He uses his very poweful Atari, and is especially careful when checking his boss' key.

Input

The input consists of no more than 20 test cases. Each test case is a line with the integers 4 <= K <= 10 100 and 2 <= L <= 10 6. K is the key itself, a product of two primes. L is the wanted minimum size of the factors in the key. The input set is terminated by a case where K = 0 and L = 0.

Output

For each number K, if one of its factors are strictly less than the required L, your program should output "BAD p", where p is the smallest factor in K. Otherwise, it should output "GOOD". Cases should be separated by a line-break.

Sample Input

143 10
143 20
667 20
667 30
2573 30
2573 40
0 0

Sample Output

GOOD
BAD 11
GOOD
BAD 23
GOOD
BAD 31 题意:求给出的一个数,求k中是否有比L小的的因子,其中K是大数 思路:因为我们L范围只有1e6,所以我们找寻因子可以直接遍历1-(L-1),然后我们进行大数取余操作,直接看余数是否为0即可
但是这样的时间复杂度就超时了,字符串长度是100 * L范围1e6 * 20组数据 = 2*1e9 (超时)
这个时候我们就要进行优化20组数据我们无法优化,只能从大数取余和找因子这里入 1,找因子
我们可以只找素因子,如果素因子都不可以说明其他因子也行不通,所以我们可以进行素数筛法打表 2.大数取余
因为我们在进行找因子的时候我们每次都要进行大数取余,重复这个操作,我们就可以进行大数转换千进制,就可以在进行大数取余操作的时候大大缩减时间复杂度
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MAX 1000100
using namespace std;
int n;
int prime[MAX+];
char str[];
void primetable()//素数打表
{
int ps=;
prime[ps++]=;
for(int i=;i<=MAX;i+=)
{
int flag=;
for(int j=;prime[j]*prime[j]<=i;j++)
if(!(i%prime[j]))
{
flag=;
break;
}
if(flag)
prime[ps++]=i;
}
}
int main()
{
primetable();
while(scanf("%s%d",str,&n)!=EOF)
{
if(str[]==''&&n==) break;
int len=strlen(str);
int ans=;
int a[];
for(int i=len-;i>=;)//转换成千进制
{
if(i<){
if(i==)
a[ans++]=str[i]-'';
else a[ans++]=str[i]-''+(str[i-]-'')*;
i=-;
}
else{
a[ans++]=str[i]-''+(str[i-]-'')*+(str[i-]-'')*;
i-=;
}
}
int flag=;
for(int i=;prime[i]<n;i++)//遍历素因子
{
long long sum=;
for(int j=ans-;j>=;j--)
{
sum=(sum*+a[j])%prime[i];
}
if(sum==)
{
printf("BAD %d\n",prime[i]);
flag=;
break;
}
}
if(flag==)
{
printf("GOOD\n");
}
}
}
												

POJ - 2635 E - The Embarrassed Cryptographer的更多相关文章

  1. POJ 2635 The Embarrassed Cryptographer

    大数取MOD... The Embarrassed Cryptographer Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 1 ...

  2. [ACM] POJ 2635 The Embarrassed Cryptographer (同余定理,素数打表)

    The Embarrassed Cryptographer Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11978   A ...

  3. POJ 2635 The Embarrassed Cryptographer (千进制,素数筛,同余定理)

    The Embarrassed Cryptographer Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15767   A ...

  4. (POJ2635)The Embarrassed Cryptographer(大数取模)

    The Embarrassed Cryptographer Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13041 Accep ...

  5. POJ2635——The Embarrassed Cryptographer(高精度取模+筛选取素数)

    The Embarrassed Cryptographer DescriptionThe young and very promising cryptographer Odd Even has imp ...

  6. poj2635The Embarrassed Cryptographer(同余膜定理)

    The Embarrassed Cryptographer Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15069   A ...

  7. HDU 2303 The Embarrassed Cryptographer

    The Embarrassed Cryptographer 题意 给一个两个素数乘积(1e100)K, 给以个数L(1e6), 判断K的两个素数是不是都大于L 题解 对于这么大的范围,素数肯定是要打表 ...

  8. poj 2635 The Embarrassed Cryptographer(数论)

    题目:http://poj.org/problem?id=2635 高精度求模  同余模定理. 题意: 给定一个大数K,K是两个大素数的乘积的值.再给定一个int内的数L 问这两个大素数中最小的一个是 ...

  9. POJ 2635 The Embarrassed Cryptographer 大数模

    题目: http://poj.org/problem?id=2635 利用同余模定理大数拆分取模,但是耗时,需要转化为高进制,这样位数少,循环少,这里转化为1000进制的,如果转化为10000进制,需 ...

随机推荐

  1. 【消息队列】从各方面比较下kafka、activemq、rabbitmq、rocketmq之间的区别

    一.单机吞吐量ActiveMQ:万级,吞吐量比RocketMQ和Kafka要低了一个数量级RabbitMQ:万级,吞吐量比RocketMQ和Kafka要低了一个数量级RocketMQ:10万级,Roc ...

  2. linux进程管理之优先级

    进程优先级 nice ==================================================================================== Linu ...

  3. Confluence 6 配置边栏

    如果你具有空间的管理员权限,你可以对空间的变量进行自定义,让你的空间具有自己的空间标识(logo),修改显示的继承关系和在空间中添加快捷方式以帮助用户在空间中进行快速导航. 希望开始配置空间边栏,选择 ...

  4. 【Oracle】【1】查询N分钟之前的数据

    --查询距离现在N分钟前的数据 1440:表示一天有1440分钟 SYSDATE - 10 :表示10天前 参考博客: 1,oracle 查询十分钟之前的数据 - 胡金水的博客 - CSDN博客 ht ...

  5. C++的字符串多行输入

    #include<iostream> using namespace std; int main() { int r, c; char grid[50][51]; cout << ...

  6. 【LeetCode】跳跃游戏

    给定一组非负整数,初始时处于数组的第一位下标 0 的位置,数组的每个元素代表那个位置可以跳跃的最大长度.判断你是否能够到达数组的最后一位下标. e.g. A = [2, 3, 1, 1, 4],返回 ...

  7. cookie VS localstorage

    http://jerryzou.com/posts/cookie-and-web-storage/ cookie: 1. 数据上限4KB左右 2. 一般由服务器生成,可设置失效时间.如果在浏览器端生成 ...

  8. rac备份及恢复的重要概念之一——Redo Threads和Streams

    rac数据库的备份和恢复,与单实例Oracle数据库的备份和恢复没有根本的不同,但区别还是有的,如果大家理解了Redo Threads和Streams概念,也就没什么了,下面这段文字清晰了解释了两者的 ...

  9. ActiveMQ 到底是推还是拉?

    http://activemq.apache.org/destination-options.html 1. consumer 的配置参数如下图: 配置consumer的示例: public void ...

  10. iperf测试工具

    一.iperf工具安装: 1.获取iperf源码安装包(iperf-3.0.5.tar.gz) 2.将iperf安装包上传到服务器/tmp/目录并解压 [root@localhost /]#cd /t ...