http://uoj.ac/problem/79

一般图和二分图的区别就是有奇环,带花树是在匈牙利算法的基础上对奇环进行缩点操作,复杂度似乎是O(mn)和匈牙利一样。

具体操作是一个一个点做类似匈牙利的找增广路操作,每次将一个点作为根(染成白色),然后向下bfs黑白染色,两个白点相邻时将这两个白点缩到割顶成一个点(用并查集维护一下)(匈牙利算法也是只用白点找增广,黑点相当于重复计算了没有意义),然后把奇环里所有黑点视为白点放到队列里bfs。

设置一个pre数组记录返回的路径(因为bfs的方向和匈牙利是相反的所以最后找到的时候再顺着返回的路径重新匹配),因为重新匹配的时候找的是可匹配的黑点,所以在dfs的时候只用给每个黑点设置pre,产生奇环的时候再对白点设置pre,因为此时奇环里的点匹配之后才能决定颜色(黑白都可以)。

这个算法,有一丶丶恶心。

原理详解:https://blog.csdn.net/u014261987/article/details/41249385

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
#define LL long long
const int maxn=;
const int mmm=;
int n,m;
struct nod{
int y,next;
}e[maxn];
int head[mmm]={},q[maxn]={},tl=,tr=,tot=;
int fa[mmm]={},tp[mmm]={},pre[mmm]={},d[mmm]={},bel[mmm]={},tly=;
void init(int x,int y){e[++tot].y=y;e[tot].next=head[x];head[x]=tot;}
inline int getfa(int x){
return fa[x]==x?x:fa[x]=getfa(fa[x]);
}
inline int lca(int x,int y){
++tly;
for(;;){
if(x){
x=getfa(x);
if(bel[x]==tly)return x;
else {bel[x]=tly;x=pre[d[x]];}
}
swap(x,y);
}
}
inline void mlink(int x,int y,int pa){
while(getfa(x)!=pa){
pre[x]=y;y=d[x];
if(tp[y]==){tp[y]=;q[++tr]=y;}
if(getfa(x)==x)fa[x]=pa;
if(getfa(y)==y)fa[y]=pa;
x=pre[y];
}
}
int doit(int s){
for(int i=;i<=n;++i)fa[i]=i;
memset(tp,,sizeof(tp));memset(pre,,sizeof(pre));
tl=tr=;q[]=s;tp[s]=;
while(tl<=tr){
int x=q[tl];++tl;
for(int i=head[x];i;i=e[i].next){
int y=e[i].y;
if(getfa(x)==getfa(y)||tp[y]==)continue;
if(!tp[y]){
tp[y]=;pre[y]=x;
if(!d[y]){
for(int now=y,las,j;now;now=las){
j=pre[now]; las=d[pre[now]];
d[now]=j;d[j]=now;
}
return ;
}
tp[d[y]]=;q[++tr]=d[y];
}
else{
int pa=lca(x,y);
mlink(x,y,pa);mlink(y,x,pa);
}
}
}return ;
}
int main(){
scanf("%d%d",&n,&m);
int x,y;
for(int i=;i<m;++i){scanf("%d%d",&x,&y);init(x,y);init(y,x);}
int ans=;
for(int i=;i<n;++i){if(!d[i])ans+=doit(i);}
printf("%d\n",ans);
for(int i=;i<=n;++i)if(d[i])d[d[i]]=i;
for(int i=;i<=n;++i){
printf("%d ",d[i]);
}printf("\n");
return ;
}

UOJ #79 一般图最大匹配 带花树的更多相关文章

  1. HDOJ 4687 Boke and Tsukkomi 一般图最大匹配带花树+暴力

    一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and ...

  2. ZOJ 3316 Game 一般图最大匹配带花树

    一般图最大匹配带花树: 建图后,计算最大匹配数. 假设有一个联通块不是完美匹配,先手就能够走那个没被匹配到的点.后手不论怎么走,都必定走到一个被匹配的点上.先手就能够顺着这个交错路走下去,最后一定是后 ...

  3. 【UOJ #79】一般图最大匹配 带花树模板

    http://uoj.ac/problem/79 带花树模板,做法详见cyb的论文或fhq的博客. 带花树每次对一个未盖点bfs增广,遇到奇环就用并查集缩环变成花(一个点),同时记录每个点的Next( ...

  4. 【UOJ 79】 一般图最大匹配 (✿带花树开花)

    从前一个和谐的班级,所有人都是搞OI的.有 n 个是男生,有 0 个是女生.男生编号分别为 1,…,n. 现在老师想把他们分成若干个两人小组写动态仙人掌,一个人负责搬砖另一个人负责吐槽.每个人至多属于 ...

  5. uoj#79. 一般图最大匹配(带花树)

    传送门 带花树 不加证明的说一下过程好了:每次从一个未匹配点\(S\)出发bfs,设\(S\)为\(1\)类点,如果当前点\(v\)在本次bfs中未经过,分为以下两种情况 1.\(v\)是未匹配点,那 ...

  6. 【learning】一般图最大匹配——带花树

    问题描述 ​ 对于一个图\(G(V,E)\),当点对集\(S\)满足任意\((u,v)\in S\),均有\(u,v\in V,(u,v)\in E\),且\(S\)中没有点重复出现,我们称\(S\) ...

  7. 【刷题】UOJ #79 一般图最大匹配

    从前一个和谐的班级,所有人都是搞OI的.有 \(n\) 个是男生,有 \(0\) 个是女生.男生编号分别为 \(1,-,n\) . 现在老师想把他们分成若干个两人小组写动态仙人掌,一个人负责搬砖另一个 ...

  8. UOJ #79. 一般图最大匹配

    板子: #include<iostream> #include<cstdio> #include<algorithm> #include<vector> ...

  9. kuangbin带你飞 匹配问题 二分匹配 + 二分图多重匹配 + 二分图最大权匹配 + 一般图匹配带花树

    二分匹配:二分图的一些性质 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j ...

随机推荐

  1. NandFlash和iNand

    nand 1.nand的单元组织:block与page(大页Nand与小页Nand)(1)Nand的页和以前讲过的块设备(尤其是硬盘)的扇区是类似的.扇区最早在磁盘中是512字节,后来也有些高级硬盘扇 ...

  2. 用nodejs做一下发送邮件例子

    var nodemailer = require("nodemailer"); var transport = nodemailer.createTransport("S ...

  3. .net active up mail 邮件发送

    using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...

  4. MVC自定义视图引擎地址

    先看结构 1.RouteConfig 文件(注意顺序) public static void RegisterRoutes(RouteCollection routes) { routes.Ignor ...

  5. 【bzoj1901】dynamic ranking(带修改主席树/树套树)

    题面地址(权限题) 不用权限题的地址 首先说说怎么搞带修改主席树? 回忆一般的kth问题,我们的主席树求的是前缀和,这样我们在目标区间的左右端点的主席树差分下就能求出kth. 那么我们如何支持修改操作 ...

  6. @Html.Action()

    背景 在这里主要想谈下mvc,最初几年都是用的webform,作为一个资深傻瓜程序员多年,后来到处听说mvc,终于在某天下定决心实验下mvc,其实关键还是在于easyui,因为它的请求数据方式和mvc ...

  7. nagios系列(八)之nagios通过nsclient监控windows主机

    nagios通过nsclient监控windows主机 1.下载NSClient -0.3.8-Win32.rar安装在需要被监控的windows主机中 可以设置密码,此处密码留空 2.通过在nagi ...

  8. 06-jQuery的文档操作(重点)

    之前js中咱们学习了js的DOM操作,也就是所谓的增删改查DOM操作.通过js的DOM的操作,大家也能发现,大量的繁琐代码实现我们想要的效果.那么jQuery的文档操作的API提供了便利的方法供我们操 ...

  9. totastmessage 触发事件后浮框消失的方法

    1. 前言 通过查了官放的文档,发现没有 totastmessage 触发事件后,浮框消失的方法,然后通过研究了下点击关闭时的源码,得到了一个的解决方案. 2. 样例代码如下 $("#dro ...

  10. Spring boot教程mybatis访问MySQL的尝试

    Windows 10家庭中文版,Eclipse,Java 1.8,spring boot 2.1.0,mybatis-spring-boot-starter 1.3.2,com.github.page ...