HDU.3516.Tree Construction(DP 四边形不等式)
贴个教程: 四边形不等式学习笔记
\(Description\)
给出平面上的\(n\)个点,满足\(X_i\)严格单增,\(Y_i\)严格单减。以\(x\)轴和\(y\)轴正方向作边,使这\(n\)个点构成一棵树,最小化树边边的总长。
\(Solution\)
考虑有两棵构造好的树,要合并这两棵树,要从右边的树中找一个最优点连到左边的树上
不难想到区间DP(真的想不到==)
\(f[i][j]\)表示将\([i,j]\)合并为一棵树的最小代价,那么有 \(f[i][j] = \min\{ f[i][k-1]+f[k][j]+cost(i,j,k) \}\)
\(cost(i,j,k)=X[k]-X[i]+Y[k-1]-Y[j]\) //ps: 当前左边树主干在 \(Xi\) 位置,且下部高度为 \(Y_{k-1}\),合并后下部应为 \(Yj\);另外肯定是拿右边树的最左上点合并啊
这个\(cost\)是三维的,证不了\(cost\)满足四边形不等式
那想下 决策应该是满足单调性的,即 \(P[i][j-1]\leq P[i][j]\leq P[i+1][j]\)
注意左端点应是\(\max(P[i][j-1],i+1)\)
\(f\)应该满足四边形不等式,不会证。
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
const int N=1005;
int n,X[N],Y[N],P[N][N],f[N][N];
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
int main()
{
while(~scanf("%d",&n))
{
for(int i=1; i<=n; ++i) X[i]=read(),Y[i]=read();
memset(f,0x3f,sizeof f);
for(int i=1; i<=n; ++i) P[i][i]=i, f[i][i]=0;
for(int tmp,i=n-1; i; --i)
for(int j=i+1; j<=n; ++j)
for(int k=std::max(P[i][j-1],i+1); k<=P[i+1][j]; ++k)
if(f[i][j]>(tmp=f[i][k-1]+f[k][j]+X[k]-X[i]+Y[k-1]-Y[j]))
f[i][j]=tmp, P[i][j]=k;
printf("%d\n",f[1][n]);
}
return 0;
}
HDU.3516.Tree Construction(DP 四边形不等式)的更多相关文章
- HDU 3516 Tree Construction (四边形不等式)
题意:给定一些点(xi,yi)(xj,yj)满足:i<j,xi<xj,yi>yj.用下面的连起来,使得所有边的长度最小? 思路:考虑用区间表示,f[i][j]表示将i到j的点连起来的 ...
- HDU 3516 Tree Construction
区间$dp$,四边形优化. #pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio&g ...
- CSP 201612-4 压缩编码 【区间DP+四边形不等式优化】
问题描述 试题编号: 201612-4 试题名称: 压缩编码 时间限制: 3.0s 内存限制: 256.0MB 问题描述: 问题描述 给定一段文字,已知单词a1, a2, …, an出现的频率分别t1 ...
- Codevs 3002 石子归并 3(DP四边形不等式优化)
3002 石子归并 3 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次 ...
- HDU 3516 DP 四边形不等式优化 Tree Construction
设d(i, j)为连通第i个点到第j个点的树的最小长度,则有状态转移方程: d(i, j) = min{ d(i, k) + d(k + 1, j) + p[k].y - p[j].y + p[k+1 ...
- 【HDU】3516 Tree Construction
http://acm.hdu.edu.cn/showproblem.php?pid=3516 题意:平面n个点且满足xi<xj, yi>yj, i<j.xi,yi均为整数.求一棵树边 ...
- hdu 3506 Monkey Party 区间dp + 四边形不等式优化
http://acm.hdu.edu.cn/showproblem.php?pid=3506 四边行不等式:http://baike.baidu.com/link?url=lHOFq_58V-Qpz_ ...
- HDOJ 3516 Tree Construction
四边形优化DP Tree Construction Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Jav ...
- HDU 2829 Lawrence(动态规划-四边形不等式)
Lawrence Problem Description T. E. Lawrence was a controversial figure during World War I. He was a ...
随机推荐
- Java探针-Java Agent技术-阿里面试题
Java探针参考:Java探针技术在应用安全领域的新突破 最近面试阿里,面试官先是问我类加载的流程,然后问了个问题,能否在加载类的时候,对字节码进行修改 我懵逼了,答曰不知道,面试官说可以的,使用Ja ...
- Linux 调优方案, 修改最大连接数(ulimit命令)【转】
转自:http://blog.csdn.net/liangxiaozhang/article/details/8363435 Linux对于每个用户,系统限制其最大进程数.为提高性能,可以根据设备资源 ...
- 实现开发板与ubuntu的共享--根文件系统NFS--Samba共享【sky原创】
虚拟机要选择桥接,并且禁用有线和无线网卡,开启本地连接,本地连接属性要写如下: ip地址是在连上板子后,windows cmd 下 ipconfig得出的 板子的网线最好连接交换机或者 ...
- ES系列九、ES优化聚合查询之深度优先和广度优先
1.优化聚合查询示例 假设我们现在有一些关于电影的数据集,每条数据里面会有一个数组类型的字段存储表演该电影的所有演员的名字. { "actors" : [ "Fred J ...
- android手机访问app网页报错:net::ERR_PROXY_CONNECTION_FAILED
手机访问网页报错:net::ERR_PROXY_CONNECTION_FAILED 手机访问app中嵌入的html网页报错: net::ERR_PROXY_CONNECTION_FAILED 原来是手 ...
- Android学习笔记————利用JDBC连接服务器数据库
/******************************************************************************************** * auth ...
- ValueError: total size of new array must be unchanged
在对数据增强后的faster rcnn中进行训练时,出现这个错误,原因是在lib/roi_data_layer/layer.py中,会出现 inds = np.reshape(inds, (-1,2) ...
- Linux VMware tools安装步骤
Linux VMware tools安装步骤: 1.安装环境介绍 #虚拟机版本:VMware-workstation-full-10 #linux分发版本:CentOS-6.4-i386-LiveCD ...
- C++ code:函数指针数组
函数指针作为一种数据类型,当然可以作为数组的元素类型.例如,要实现用菜单来驱动函数调用的程序框架,则用函数指针数组来实现就比较容易维护. #include<iostream> using ...
- Java 变量、循环、判断
粗糙笔记不喜勿喷 Java 8大基本类型 第一类:逻辑型(boolean) 1.boolean类型只存在true(真),false(假)两种形式 例: boolean a=true; boolean ...