HDU 1569 - 方格取数(2) - [最大点权独立集与最小点权覆盖集]
嗯,这是关于最大点权独立集与最小点权覆盖集的姿势,很简单对吧,然后开始看题。
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1569
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的数的和最大。
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#define MAX 53*53
#define INF 0x3f3f3f3f
using namespace std;
int m,n,map[][],sum;
int d[][]={{,+},{+,},{,-},{-,}};
struct Edge{
int u,v,c,f;
};
struct Dinic
{
int s,t;
vector<Edge> E;
vector<int> G[MAX];
bool vis[MAX];
int lev[MAX];
int cur[MAX];
void init(int l,int r)
{
E.clear();
for(int i=l;i<=r;i++) G[i].clear();
}
void addedge(int from,int to,int cap)
{
E.push_back((Edge){from,to,cap,});
E.push_back((Edge){to,from,,});
G[from].push_back(E.size()-);
G[to].push_back(E.size()-);
}
bool bfs()
{
memset(vis,,sizeof(vis));
queue<int> q;
q.push(s);
lev[s]=;
vis[s]=;
while(!q.empty())
{
int now=q.front(); q.pop();
for(int i=,_size=G[now].size();i<_size;i++)
{
Edge edge=E[G[now][i]];
int nex=edge.v;
if(!vis[nex] && edge.c>edge.f)
{
lev[nex]=lev[now]+;
q.push(nex);
vis[nex]=;
}
}
}
return vis[t];
}
int dfs(int now,int aug)
{
if(now==t || aug==) return aug;
int flow=,f;
for(int& i=cur[now],_size=G[now].size();i<_size;i++)
{
Edge& edge=E[G[now][i]];
int nex=edge.v;
if(lev[now]+ == lev[nex] && (f=dfs(nex,min(aug,edge.c-edge.f)))>)
{
edge.f+=f;
E[G[now][i]^].f-=f;
flow+=f;
aug-=f;
if(!aug) break;
}
}
return flow;
}
int maxflow()
{
int flow=;
while(bfs())
{
memset(cur,,sizeof(cur));
flow+=dfs(s,INF);
}
return flow;
}
}dinic;
int inmap(int i,int j)
{
if(<=i && i<=m && <=j && j<=n) return (i-)*n+j;
else return ;
}
int main()
{
while(scanf("%d%d",&m,&n)!=EOF)//m行n列
{
dinic.init(,m*n+);
sum=;
dinic.s=, dinic.t=m*n+;
for(int i=;i<=m;i++)
{
for(int j=;j<=n;j++)
{
scanf("%d",&map[i][j]);
sum+=map[i][j];
int id=(i-)*n+j;
if((i+j)%)
{
for(int k=,_id;k<;k++) if(_id=inmap(i+d[k][],j+d[k][])) dinic.addedge(id,_id,INF);
dinic.addedge(dinic.s,id,map[i][j]);
}
else dinic.addedge(id,dinic.t,map[i][j]);
}
}
printf("%d\n",sum-dinic.maxflow());
}
}
HDU 1569 - 方格取数(2) - [最大点权独立集与最小点权覆盖集]的更多相关文章
- HDU 1565 1569 方格取数(最大点权独立集)
HDU 1565 1569 方格取数(最大点权独立集) 题目链接 题意:中文题 思路:最大点权独立集 = 总权值 - 最小割 = 总权值 - 最大流 那么原图周围不能连边,那么就能够分成黑白棋盘.源点 ...
- HDU 1569 方格取数(2)
方格取数(2) Time Limit: 5000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID: 15 ...
- 网络流(最大流) HDU 1565 方格取数(1) HDU 1569 方格取数(2)
HDU 1565 方格取数(1) 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的 ...
- HDU 1569 方格取数(2) (最小割)
方格取数(2) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Su ...
- hdu - 1565 方格取数(1) && 1569 方格取数(2) (最大点权独立集)
http://acm.hdu.edu.cn/showproblem.php?pid=1565 两道题只是数据范围不同,都是求的最大点权独立集. 我们可以把下标之和为奇数的分成一个集合,把下标之和为偶数 ...
- HDU 1569 方格取数(2)(最大流最小割の最大权独立集)
Description 给你一个m*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的数的和最大. ...
- HDU 1565 - 方格取数(1) - [状压DP][网络流 - 最大点权独立集和最小点权覆盖集]
题目链接:https://cn.vjudge.net/problem/HDU-1565 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32 ...
- [HDU 1565+1569] 方格取数
HDU 1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- HDU 1565&1569 方格取数系列(状压DP或者最大流)
方格取数(2) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
随机推荐
- Delphi中封装ADO之我重学习记录
delphi adodataset ctstatic 数据是缓存在服务器端还是客户端 答:客户端,开启本地缓存功能后,就能数据在本地批量修改后,再批量提交,减少了网络传送 原创,专业,图文 Del ...
- LODOP中平铺图片 文本项Repeat
Lodop打印控件中,可使用如下语句让打印项平铺在纸张上.LODOP.SET_PRINT_STYLEA(0,"Repeat",true);平铺的打印项的区域和打印项的宽高有关,如图 ...
- BZOJ4870 [六省联考2017] 组合数问题 【快速幂】
题目分析: 构造f[nk][r]表示题目中要求的东西.容易发现递推公式f[nk][r]=f[nk-1][r]+f[nk-1][(r-1)%k].矩阵快速幂可以优化,时间复杂度O(k^3logn). 代 ...
- Hibernate表关系03
一. 一对多映射 1.基本应用 1.1 准备项目 创建项目:hibernate-02-relation 引入jar,同前一个项目 复制实体(客户).映射.配置.工具类 1.2 创建订单表 表名: t_ ...
- 聪聪和可可 HYSBZ - 1415(概率 + spfa + 记忆化dp)
Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行,每 ...
- Java 8 的 Metaspace
Java 8 的 Metaspace https://www.cnblogs.com/xrq730/p/8688203.html 被废弃的持久代 想起之前面试的时候有面试官问起过我一个问题:Java ...
- [树链剖分]hihocoder1883
描述 有一个无向图,有n个点,m1条第一类边和m2条第二类边.第一类边有边权,第二类边无边权.请为第二类的每条边定义一个边权,使得第二类边可能全部出现在该无向图的最小生成树上,同时要求第二类边的边权总 ...
- 用ip代替机器名访问sharepoint 站点
1. aam 里加入一个ip的internet 2. iis里不用加上ip,但不要有host name 出现的问题: 1. 当打开站点里会出现这个错误 file not found 2. 当加授予 ...
- luogu4932 浏览器 (拆)
分析1的个数的奇偶性: 奇xor奇=偶xor偶=偶 奇xor偶=奇 所以只要统计1的个数是奇数的数的个数 和 是偶数的个数 乘一起就行了 直接用bitset来做,虽然常数很小/数据随机可以过,但复杂度 ...
- 【BZOJ1558】等差数列(线段树)
[BZOJ1558]等差数列(线段树) 题面 BZOJ 题解 可以说这道题已经非常毒瘤了 怎么考虑询问操作? 如果直接将一段数分解为等差数列? 太麻烦了.... 考虑相邻的数做差, 这样等差数列变为了 ...