Python人工智能之路 - 第四篇 : jieba gensim 最好别分家之最简单的相似度实现
简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能中的另一项技术:
自然语言处理(NLP) : 大概意思就是 让计算机明白一句话要表达的意思,NLP就相当于计算机在思考你说的话,让计算机知道"你是谁","你叫啥","你叫什么名字"是一个意思
这就要做 : 语义相似度
接下来我们用Python大法来实现一个简单的自然语言处理
现在又要用到Python强大的三方库了
第一个是将中文字符串进行分词的库叫 jieba
pip install jieba
我们通常把这个库叫做 结巴分词 确实是结巴分词,而且这个词库是 made in china , 基本用一下这个结巴分词:
import jieba key_word = "你叫什么名字" # 定义一句话,基于这句话进行分词 cut_word = jieba.cut(key_word) # 使用结巴分词中的cut方法对"你叫什么名字" 进行分词 print(cut_word) # <generator object Tokenizer.cut at 0x03676390> 不懂生成器的话,就忽略这里 cut_word_list = list(cut_word) # 如果不明白生成器的话,这里要记得把生成器对象做成列表 print(cut_word_list) # ['你', '叫', '什么', '名字']
测试代码就很明显了,它很清晰的把咱们的中文字符串转为列表存储起来了
第二个是一个语言训练库叫 gensim
pip install gensim
这个训练库很厉害, 里面封装很多机器学习的算法, 是目前人工智能的主流应用库,这个不是很好理解, 需要一定的Python数据处理的功底
import jieba
import gensim
from gensim import corpora
from gensim import models
from gensim import similarities l1 = ["你的名字是什么", "你今年几岁了", "你有多高你胸多大", "你胸多大"]
a = "你今年多大了" all_doc_list = []
for doc in l1:
doc_list = [word for word in jieba.cut(doc)]
all_doc_list.append(doc_list) print(all_doc_list)
doc_test_list = [word for word in jieba.cut(a)] # 制作语料库
dictionary = corpora.Dictionary(all_doc_list) # 制作词袋
# 词袋的理解
# 词袋就是将很多很多的词,进行排列形成一个 词(key) 与一个 标志位(value) 的字典
# 例如: {'什么': 0, '你': 1, '名字': 2, '是': 3, '的': 4, '了': 5, '今年': 6, '几岁': 7, '多': 8, '有': 9, '胸多大': 10, '高': 11}
# 至于它是做什么用的,带着问题往下看 print("token2id", dictionary.token2id)
print("dictionary", dictionary, type(dictionary)) corpus = [dictionary.doc2bow(doc) for doc in all_doc_list]
# 语料库:
# 这里是将all_doc_list 中的每一个列表中的词语 与 dictionary 中的Key进行匹配
# 得到一个匹配后的结果,例如['你', '今年', '几岁', '了']
# 就可以得到 [(1, 1), (5, 1), (6, 1), (7, 1)]
# 1代表的的是 你 1代表出现一次, 5代表的是 了 1代表出现了一次, 以此类推 6 = 今年 , 7 = 几岁
print("corpus", corpus, type(corpus)) # 将需要寻找相似度的分词列表 做成 语料库 doc_test_vec
doc_test_vec = dictionary.doc2bow(doc_test_list)
print("doc_test_vec", doc_test_vec, type(doc_test_vec)) # 将corpus语料库(初识语料库) 使用Lsi模型进行训练
lsi = models.LsiModel(corpus)
# 这里的只是需要学习Lsi模型来了解的,这里不做阐述
print("lsi", lsi, type(lsi))
# 语料库corpus的训练结果
print("lsi[corpus]", lsi[corpus])
# 获得语料库doc_test_vec 在 语料库corpus的训练结果 中的 向量表示
print("lsi[doc_test_vec]", lsi[doc_test_vec]) # 文本相似度
# 稀疏矩阵相似度 将 主 语料库corpus的训练结果 作为初始值
index = similarities.SparseMatrixSimilarity(lsi[corpus], num_features=len(dictionary.keys()))
print("index", index, type(index)) # 将 语料库doc_test_vec 在 语料库corpus的训练结果 中的 向量表示 与 语料库corpus的 向量表示 做矩阵相似度计算
sim = index[lsi[doc_test_vec]] print("sim", sim, type(sim)) # 对下标和相似度结果进行一个排序,拿出相似度最高的结果
# cc = sorted(enumerate(sim), key=lambda item: item[1],reverse=True)
cc = sorted(enumerate(sim), key=lambda item: -item[1])
print(cc) text = l1[cc[0][0]] print(a,text)
前方高能
Python人工智能之路 - 第四篇 : jieba gensim 最好别分家之最简单的相似度实现的更多相关文章
- 3,jieba gensim 最好别分家之最简单的相似度实现
简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能 ...
- jieba gensim 最好别分家之最简单的相似度实现
简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能 ...
- Python人工智能之路 - 第三篇 : PyAudio 实现录音 自动化交互实现问答
Python 很强大其原因就是因为它庞大的三方库 , 资源是非常的丰富 , 当然也不会缺少关于音频的库 关于音频, PyAudio 这个库, 可以实现开启麦克风录音, 可以播放音频文件等等,此刻我们不 ...
- python学习之路网络编程篇(第四篇)
python学习之路网络编程篇(第四篇) 内容待补充
- (转)Python成长之路【第九篇】:Python基础之面向对象
一.三大编程范式 正本清源一:有人说,函数式编程就是用函数编程-->错误1 编程范式即编程的方法论,标识一种编程风格 大家学习了基本的Python语法后,大家就可以写Python代码了,然后每个 ...
- Python学习之路【第一篇】-Python简介和基础入门
1.Python简介 1.1 Python是什么 相信混迹IT界的很多朋友都知道,Python是近年来最火的一个热点,没有之一.从性质上来讲它和我们熟知的C.java.php等没有什么本质的区别,也是 ...
- Python开发之路:目录篇
第一部分:Python基础知识 本篇主要python基础知识的积累和学习,其中包括python的介绍.基本数据类型.函数.模块及面向对象等. 第一篇:Python简介 第二篇:Python基本知识 ...
- Python人工智能之路 - 第二篇 : 算法实在太难了有现成的直接用吧
本节内容 预备资料: 1.FFmpeg: 链接:https://pan.baidu.com/s/1jonSAa_TG2XuaJEy3iTmHg 密码:w6hk 2.baidu-aip: pip ins ...
- Python人工智能之路 - 第一篇 : 你得会点儿Python基础
Python 号称是最接近人工智能的语言,因为它的动态便捷性和灵活的三方扩展,成就了它在人工智能领域的丰碑 走进Python,靠近人工智能 一.编程语言Python的基础 之 "浅入浅出&q ...
随机推荐
- c++ 为自定义类添加stl遍历器风格的遍历方式
为仿照stl的遍历风格,实现对自定义类型的遍历. 1. 需要遍历的基础结构: struct ConnectionPtr { int id_; int port_; string addr_; //st ...
- ajax 提交字符串到后台 反序列化
MVC后台 或者 Webapi 都可以使用此方式 前台 @using (Html.BeginForm("Test","Test")) { <input t ...
- codeforces 793B. Igor and his way to work
B. Igor and his way to work time limit per test 3 seconds memory limit per test 256 megabytes input ...
- day5 用户交互 input用法
death_age = 80 name= input("your name:") age= input("your age:") #inputs 接受的所有数据 ...
- 数据挖掘(二)用python实现数据探索:汇总统计和可视化
今天我们来讲一讲有关数据探索的问题.其实这个概念还蛮容易理解的,就是我们刚拿到数据之后对数据进行的一个探索的过程,旨在了解数据的属性与分布,发现数据一些明显的规律,这样的话一方面有助于我们进行数据预处 ...
- 【BZOJ2484】[SDOI2011]打地鼠(暴力)
[BZOJ2484][SDOI2011]打地鼠(暴力) 题面 BZOJ 洛谷 题解 看到数据范围这题就应该是一个暴力题了. 先考虑假如我们知道了锤子的大小\(R*C\),那么显然只需要从左上角开始从左 ...
- [luogu4264][USACO18FEB]Teleportation
题解 先吐槽一波题目:便便传送门,出题人还真的有一点厉害的滑稽. 废话不多说. 首先问题的本质就是求如果当这个传送门的端点位于\(y\)的时候,最小的求出总代价,我们设为函数\(f(y)\). 因为这 ...
- #define用法之一
[问题由来] 多文件工程中,A文件要使用B文件的func1函数,只要在A文件中include “B.h”即可: 但A文件中使用的是func2函数,它与func1函数功能一样,只是名字不同而已,即fun ...
- POJ1088(记忆搜索加dp)
滑雪 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 106415 Accepted: 40499 Description ...
- 【codevs4829】数字三角形++
题目大意:给定一个数字三角形,求从 (1,1) 到第 N 行的路径经过的权值之和加上该路径上任意一个点的权值之和的最大值. 题解:任意加一条路径上的某个值,可以看成是多了一次选择的权利,即:在每次经过 ...