P3455 [POI2007]ZAP-Queries(莫比乌斯反演)
思路
和YY的GCD类似但是更加简单了
类似的推一波公式即可
\]
\]
\]
\]
\]
然后整除分块即可
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int T,n,m,mu[51000],iprime[51000],isprime[51000],summu[51000],cnt,k;
void prime(int n){
isprime[1]=true;
mu[1]=1;
for(int i=2;i<=n;i++){
if(!isprime[i])
iprime[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&iprime[j]*i<=n;j++){
isprime[iprime[j]*i]=true;
mu[iprime[j]*i]=-mu[i];
if(i%iprime[j]==0){
mu[iprime[j]*i]=0;
break;
}
}
}
for(int i=1;i<=n;i++)
summu[i]=summu[i-1]+mu[i];
}
long long f(int k){
long long ans=0;
for(int l=1,r;l<=min(n,m);l=r+1){
r=min((n/(n/(l))),(m/(m/(l))));
ans+=1LL*(summu[r]-summu[l-1])*(n/(l*k))*(m/(l*k));
}
return ans;
}
int main(){
prime(50100);
scanf("%d",&T);
while(T--){
scanf("%d %d %d",&n,&m,&k);
if(n<m)
swap(n,m);
printf("%lld\n",f(k));
}
return 0;
}
P3455 [POI2007]ZAP-Queries(莫比乌斯反演)的更多相关文章
- 【BZOJ】1101 [POI2007]Zap(莫比乌斯反演)
题目 传送门:QWQ 分析 莫比乌斯反演. 还不是很熟练qwq 代码 //bzoj1101 //给出a,b,d,询问有多少对二元组(x,y)满足gcd(x,y)=d.x<=a,y<=b # ...
- BZOJ1101 POI2007 Zap 【莫比乌斯反演】
BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b, ...
- 【BZOJ1101】[POI2007] Zap(莫比乌斯反演)
点此看题面 大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^M[gcd(x,y)==d]\). 一道类似的题目 推荐先去做一下这道题:[洛谷2257]YY的GCD,来初步了解一下莫比乌 ...
- 洛谷P3455 [POI2007]ZAP-Queries (莫比乌斯反演)
题意:求$\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)==d]$(1<=a,b,d<=50000). 很套路的莫比乌斯反演. $\sum_{i=1}^{n}\ ...
- 洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)
传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rflo ...
- BZOJ 1101 [POI2007]Zap(莫比乌斯反演)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1101 [题目大意] 求[1,n][1,m]内gcd=k的情况 [题解] 考虑求[1,n ...
- ☆ [POI2007] ZAP-Queries 「莫比乌斯反演」
题目类型:莫比乌斯反演 传送门:>Here< 题意:求有多少对正整数对\((a,b)\),满足\(0<a<A\),\(0<b<B\),\(gcd(a,b)=d\) ...
- [luogu3455][POI2007]ZAP-Queries【莫比乌斯反演】
题目描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得 ...
- 【BZOJ】1101: [POI2007]Zap(莫比乌斯+分块)
http://www.lydsy.com/JudgeOnline/problem.php?id=1101 无限膜拜数论和分块orz 首先莫比乌斯函数的一些性质可以看<初等数论>或<具 ...
随机推荐
- Yii2 Restful api设计--App接口编程
Yii2框架写一套RESTful风格的API,对照魏曦教你学 一,入门 一.目录结构 实现一个简单地RESTful API只需用到三个文件.目录如下: frontend ├─ config │ └ m ...
- 【转】LoadRunner压力测试:测试报告结果分析
见:https://blog.csdn.net/haoui123/article/details/62036723
- RobotFrameWork(一)robotfamework(python版)及Ride在windows安装
1.windows下的安装 (1)准备条件: python-2.7.3.msi robotframework-2.7.5.win32.exe wxPython2.8-win32-unicode-2.8 ...
- jQuery事件--keypress([[data],fn])和trigger(type,[data])
keypress([[data],fn]) 概述 当键盘或按钮被按下时,发生 keypress 事件 keypress 事件与 keydown 事件类似.当按钮被按下时,会发生该事件.它发生在当前获得 ...
- python二 总结--函数-- 装饰器
装饰器是什么? 有什么用? 为什么要用? 真的有用吗? 1.装饰器: 装饰器: 定义:本质是函数,(装饰其他函数)就是为其他函数添加附加功能. 原则:1.不能修改被装饰的函数的源代码 ...
- 【爬虫】biqukan抓取2.0版
#!python3.7 import requests,sys,time,logging,random from lxml import etree logging.basicConfig(level ...
- 变量为空代表false
name = ''#名字为空即代表False while not name:#not name=False即 真,将执行循环体 print('Enter your name:') name = inp ...
- pcb走线注意事项笔记
一.高压隔离. PCB的安全距离: 1.电气间隙或者叫做控件距离. (两相邻的后者一个到相邻电机壳表面的沿空气测量的最短距离,电气间隙的决定,根据测量的工作电压以及绝缘等级就可以决定距离.) a.一次 ...
- 20165215 2017-2018-2 《Java程序设计》第5周学习总结
20165215 2017-2018-2 <Java程序设计>第5周学习总结 教材学习内容总结 chapter7 Java支持在一个类中声明另外一个类,这样的类称作内部类,而包含内部类的类 ...
- Linux基础命令---文本编辑tee
tee 将标准输入的内容复制到指定的文件中,同时在标准输出中显示. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUSE.Fedora. 1.语法 ...