P3980 [NOI2008]志愿者招募
思路
巧妙的建图
因为每个志愿者有工作的时段,所以考虑让一个志愿者的流量能够从S流到T产生贡献
所以每个i向i+1连INF-a[x]的边(类似于k可重区间集),每个si向ti连边cap=INF,cost=ci的边
相当于就是最大流要补全到INF,然后这个边的边权少了a[x],然后为了补全到INF,并且前面还有一个能从s向t能走的边可以通过流量(相当于加一个人),然后最大流就会补上这部分流量
然后MCMF就好了
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue>
#include <vector>
using namespace std;
struct Edge{
int u,v,cap,cost,flow;
};
const int MAXN = 50000;
const int INF = 0x3f3f3f3f;
vector<Edge> edges;
vector<int> G[MAXN];
void addedge(int u,int v,int cap,int cost){
edges.push_back((Edge){u,v,cap,cost,0});
edges.push_back((Edge){v,u,0,-cost,0});
int cnt=edges.size();
G[u].push_back(cnt-2);
G[v].push_back(cnt-1);
}
int d[MAXN],a[MAXN],p[MAXN],s,t,vis[MAXN],n,m;
queue<int> q;
bool spfa(int &flow,int &cost){
memset(d,0x3f,sizeof(d));
memset(p,0,sizeof(p));
q.push(s);
a[s]=INF;
d[s]=0;
vis[s]=true;
while(!q.empty()){
int x=q.front();
q.pop();
vis[x]=false;
for(int i=0;i<G[x].size();i++){
Edge &e = edges[G[x][i]];
if(e.cap>e.flow&&d[x]+e.cost<d[e.v]){
d[e.v]=d[x]+e.cost;
a[e.v]=min(a[x],e.cap-e.flow);
p[e.v]=G[x][i];
if(!vis[e.v]){
vis[e.v]=true;
q.push(e.v);
}
}
}
}
if(d[t]==INF)
return false;
flow+=a[t];
cost+=a[t]*d[t];
for(int i=t;i!=s;i=edges[p[i]].u){
edges[p[i]].flow+=a[t];
edges[p[i]^1].flow-=a[t];
}
return true;
}
void mcmf(int &flow,int &cost){
flow=0,cost=0;
while(spfa(flow,cost));
}
int main(){
scanf("%d %d",&n,&m);
s=MAXN-2;
t=MAXN-3;
for(int i=1;i<=n;i++){
int x;
scanf("%d",&x);
addedge(i,i+1,INF-x,0);
}
for(int i=1;i<=m;i++){
int sx,tx,cx;
scanf("%d %d %d",&sx,&tx,&cx);
addedge(sx,tx+1,INF,cx);
}
addedge(s,1,INF,0);
addedge(n+1,t,INF,0);
int cost,flow;
mcmf(flow,cost);
printf("%d\n",cost);
return 0;
}
P3980 [NOI2008]志愿者招募的更多相关文章
- 【洛谷】P3980 [NOI2008]志愿者招募
[洛谷]P3980 [NOI2008]志愿者招募 我居然现在才会用费用流解线性规划-- 当然这里解决的一类问题比较特殊 以式子作为点,变量作为边,然后要求就是变量在不同的式子里出现了两次,系数一次为+ ...
- P3980 [NOI2008]志愿者招募 费用流 (人有多大胆地有多大产
https://www.luogu.org/problemnew/show/P3980 感觉费用流比网络流的图更难想到,要更大胆.首先由于日期是连续的,所以图中的点是横向排列的. 这道题有点绕道走的意 ...
- 洛谷P3980 [NOI2008]志愿者招募
题解 最小费用最大流 每一天是一条边\((inf-a[i], 0)\) 然后对于一类志愿者, 区间两端连一条\((inf, c[i])\) \(S\)向第一个点连\((inf, 0)\) 最后一个点向 ...
- luogu P3980 [NOI2008]志愿者招募
传送门 网络流又一神仙套路应用 首先考虑列不等式,设\(x_i\)为第i种人的个数,记\(b_{i,j}\)为第i种人第j天是否能工作,那么可以列出n个不等式,第j个为\(\sum_{i=1}^{m} ...
- P3980 [NOI2008]志愿者招募 (费用流)
题意:最多1000天 每天需要至少ai个工人施工 有10000种工人可以雇佣 每种工人可以工作si到ti天 雇佣一个的花费是ci 问怎样安排使得施工花费最少 思考:最直白的建模方式 就是每种工人可以和 ...
- BZOJ 1061: [Noi2008]志愿者招募
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 4064 Solved: 2476[Submit][Stat ...
- BZOJ 1061: [Noi2008]志愿者招募 [单纯形法]【学习笔记】
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 3975 Solved: 2421[Submit][Stat ...
- [BZOJ1061][Noi2008]志愿者招募
[BZOJ1061][Noi2008]志愿者招募 试题描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿 ...
- BZOJ 1061: [Noi2008]志愿者招募 费用流
1061: [Noi2008]志愿者招募 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1061 Description 申奥成功后,布布 ...
随机推荐
- HTML5特性&&canvas
1.HTML5是由W3C(万维网联盟,专注于XHTML 2.0)和WHATWG(专注于web表单和应用程序)共同合作的结果,2014年10月完成标准制定! 主要设计目的:为了在移动设备上支持多媒体. ...
- JavaBean和List<JavaBean>
2018-11-04 23:04:03开始写 返回泛型为User是列表 public List<User> getUserInfo() { conn = getConn();//获取数据库 ...
- Spark学习之路 (二十七)图简介
一.图 1.1 基本概念 图是由顶点集合(vertex)及顶点间的关系集合(边edge)组成的一种数据结构. 这里的图并非指代数中的图.图可以对事物以及事物之间的关系建模,图可以用来表示自然发生的连接 ...
- caffe生成voc格式lmdb
要训练ssd基本都是在liu wei框架下改,生成lmdb这一关照葫芦画瓢总遇坑,记录之: 1. labelmap_voc.prototxt要根据自己的分类修改,比如人脸检测改成这样: item { ...
- hashcat 中文文档
hashcat 描述 hashcat是世界上最快,最先进的密码恢复工具. 此版本结合了以前基于CPU的hashcat(现在称为hashcat-legacy)和基于GPU的oclHashcat. H ...
- LinkedList 底层实现原理
LinkedList的底层实现原理 LinkedList 底层数据结构为双向链表,链表结构,基于一个个链表节点Node 1,Inner Class 内部类 private static class N ...
- python 怎么让list里面设置NAN numpy.nan
- linux常用命令:cat 命令
cat命令的用途是连接文件或标准输入并打印.这个命令常用来显示文件内容,或者将几个文件连接起来显示,或者从标准输入读取内容并显示,它常与重定向符号配合使用. 1.命令格式: cat [选项] [文件] ...
- Druid-目前最好的连接池
https://blog.csdn.net/youanyyou/article/details/78992979 Druid是什么Druid是阿里开源的连接池,是Java语言中最好的数据库连接池.Dr ...
- jquery遍历获取每一行数据进行对比
$("#dtlTable tr:gt(0)").each(function(i){ var orderQtyBy = $("input[name='orderQtyBys ...